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Evaluation of dual-wavelength excitation
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Abstract

Background: It is important to devise efficient and easy methods of detecting colorectal tumours to reduce
mortality from colorectal cancer. Dual-wavelength excitation autofluorescence intensity can be used to visualize
colorectal tumours. Therefore, we evaluated dual-wavelength excitation autofluorescence images of colorectal
tumours obtained with a newly developed, high-sensitivity complementary metal-oxide-semiconductor (CMOS)
imager.

Methods: A total 107 colorectal tumours (44 adenomas, 43 adenocarcinomas with intramucosal invasion, and
20 sessile serrated adenoma/polyps [SSA/Ps]) in 98 patients who underwent endoscopic tumour resection were
included. The specimens were irradiated with excitation light at 365 nm and 405 nm, and autofluorescence images
measured with a 475 ± 25-nm band pass filter were obtained using a new, high-sensitivity CMOS imager. Ratio images
(F365ex/F405ex) were created to evaluate the lesion brightness compared with that of normal mucosa, and specimens
were categorized into a no signal or high signal group.

Results: Adenomas and adenocarcinomas were depicted in 87 ratio images, with 86.2 % (n = 75) in the High signal
group. SSA/P was depicted in 20 ratio images, with 70.0 % (n = 14) in the High signal group.

Conclusions: Dual-wavelength excitation autofluorescence images of colorectal tumours can be acquired using our
high-sensitivity CMOS imager, and are useful in detecting colorectal tumours.
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Background
Colorectal tumours are among the most common tumours
worldwide [1]. Because most adenomas are premalignant
lesions, elimination of colon adenoma is an effective strat-
egy for preventing colon cancer development, and several
studies have reported that endoscopic resection of colon
adenoma decreases colon cancer mortality. Additionally,
serrated colorectal lesions are considered precursors for up
to one-third of colorectal cancers. Sensitive detection of
adenomas would contribute to risk prediction and to the
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planning of appropriate surveillance intervals, especially
because the number of adenomas is a good determina-
tive factor for predicting the long-term risk of advanced
neoplasia [2–4]. However, systematic reviews of serial
colonoscopy using auto-fluorescence imaging (AFI) and
high-resolution white light colonoscopy showed that
15–32 % of colorectal adenomas, particularly flat and
depressed adenomas such as sessile serrated adenomas,
were missed by colonoscopy [5, 6].
Fluorescence emission, also known as autofluorescence,

is an intrinsic property of cells that is caused by endogen-
ous fluorophores. Research on autofluorescence and its
clinical applications has been conducted in various fields
[7–11]. Current knowledge suggests that the composition
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and bio-distribution of fluorophores such as collagen, por-
phyrin, nicotinamide adenine dinucleotide hydrogenase
(NADH), flavin adenine dinucleotide, and lysosome gran-
ules in the colorectal wall may be responsible for the
visible differences within the tissue [9–18].
Autofluorescence imaging (AFI) captures the fluores-

cence emitted from intestinal and other tissues. The AFI
device produces and delivers excitation light at 442 nm to
the tissue surface and then captures the reflected light and
emitted fluorescence using high-sensitivity charge-coupled
devices (CCDs) [6, 19, 20]. AFI primarily captures the
fluorescence emitted by collagen in the submucosal layer,
and abnormal areas are indicated by decreased fluores-
cence intensity [19]. This suggests that AFI images the
tumour indirectly, and furthermore, AFI is disadvantaged
by its high false-positive rate and low specificity of 35 %
[21]. Thus, technical developments allowing tumour auto-
fluorescence to be directly observed are expected.
In a recent study, the dual-wavelength excitation

method, using excitation wavelengths of 365 nm and
405 nm and a 470 ± 20-nm band pass filter, was employed
to measure autofluorescence; the study found that this
technique was useful for visualizing and discriminating co-
lonic adenomas on cross-section [22]. In addition to the
direct capture of tumour autofluorescence images, the
brightness difference between the lesions and normal mu-
cosa was also suggested to reflect the amount of NADH,
which is a known metabolism-related fluorophore.
For imaging, the weak autofluorescence necessitates a

long exposure time when using a normal-sensitivity
CCD image sensor, or it requires a high-sensitivity EM-
CCD image sensor that must be cooled to at least −20 °C
to reduce noise. A new high-sensitivity image sensor that
does not require cooling is needed for practical clinical
use. We recently developed a high-sensitivity complemen-
tary metal-oxide-semiconductor (CMOS) imager that can
be used at room temperature [23, 24].
In the present study, we evaluated the surface auto-

fluorescence in human colorectal adenoma, and adeno-
carcinoma, and sessile serrated adenoma/polyp (SSA/P)
specimens using a dual-wavelength excitation method with
the newly developed high-sensitivity CMOS imager. We
also evaluated the relationship between the brightness of
colonic tumours during autofluorescence imaging and their
histologic structure.
Methods
Specimen preparation
We examined 107 specimens obtained from 98 patients
who underwent endoscopic mucosal resection or endo-
scopic submucosal dissection of one or more colorectal
lesions. The patients were treated at Hiroshima Univer-
sity Hospital between October 2012 and March 2014,
and included 62 men and 36 women aged 65.1 ±
11.3 years (mean ± standard deviation [SD]).
To minimize metabolic biotransformation after resection,

the specimens were immersed in phosphate-buffered saline
solution immediately after removal, and autofluorescence
images were obtained as soon as possible. The time be-
tween endoscopic resection and image capture was less
than 5 min in all cases.
The lesions were classified morphologically according to

the Paris endoscopic classification of superficial neoplastic
lesions [25]. Forty-four of 107 lesions were diagnosed as
adenoma, 43 as adenocarcinoma with intramucosal inva-
sion, and 20 as SSA/P.
This study was conducted with the approval of the

ethics committee of Hiroshima University Hospital. In-
formed consent was obtained from all patients and/or
family members for endoscopic examination and patho-
logic examination of tissue samples.

Acquisition of autofluorescence images
The surface autofluorescence of colorectal tumours
was evaluated using the dual-wavelength excitation
method [22]. A stereomicroscope (SZX12; Olympus
Medical Systems Corp., Tokyo, Japan) for microscopic
autofluorescence analysis was equipped with an objective
lens (DF PLAPO 1.2× PF2; Olympus) and a band pass fil-
ter (475 nm/25×; Edmund Optics, Barrington, NJ, USA)
[23, 24]. An LED light (UVLED illuminator, spot type,
365 nm and 405 nm, Kenko Tokina, Tokyo, Japan) served
as the excitation light source. The newly developed CMOS
imager was designed to be highly sensitive with low noise
and a wide dynamic range. The CMOS imager was fabri-
cated in 0.18-μm technology at the following specifica-
tions: 1.3 megapixels (1284 [H] × 1028 [V]); pixel size,
7.1 μm× 7.1 μm; and maximum frame rate, 30 frames/s
[23, 24]. Autofluorescence images were obtained with the
CMOS imager at room temperature.
Sequential autofluorescence surface images of specimens

containing both tumour and normal tissue were obtained
using a band pass filter (475 ± 25 nm) at a 365-nm excita-
tion (F365ex) followed by a 405-nm excitation (F405ex), as
shown in Fig. 1.

Creation and evaluation of dual-wavelength excitation
images
The autofluorescence signal intensities were calculated
from the acquired images. Autofluorescence ratio (F365ex/
F405ex) images were constructed from the paired autoflu-
orescence images acquired with 365-nm excitation and
405-nm excitation (Fig. 1). The lesion and normal tissue
brightness on the ratio image were compared and catego-
rized as either no signal intensity (no-signal group) or high
signal intensity (high-signal group) (Fig. 2) by a gastro-
enterologist who was blinded to the histologic findings.
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Fig. 1 Representative autofluorescence ratio image. Autofluorescence images were obtained with a high-sensitivity CMOS imager by irradiating
the resected specimen with 405-nm followed by 365-nm excitation light. The ratio images were then created by dividing the F365ex (365 nm) by
F405ex (405 nm). a. Colon tumour observed during endoscopy. b. Fresh resected specimen. c. Autofluorescence image at 365-nm excitation
(F365ex). d. Autofluorescence imaging at 405-nm excitation (F405ex). e. The calculated ratio image. f. Resected formalin-fixed specimen
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Interobserver agreement
Another gastroenterologist categorized the same ratio
images as high-signal group and no-signal group. Inter-
observer agreement between the two gastroenterologists
was then analysed to determine kappa values.
B

A

Fig. 2 Classification of lesion brightness in autofluorescence ratio images. a
normal mucosa, the lesion does not appear bright (ratio image of a). c. Fre
normal mucosa, the lesion appears bright (ratio image of c)
Statistical analysis
The interobserver agreement of the classification of the
ratio images, i.e., the agreement between two gastroenterol-
ogists, was tested using the kappa statistic. Differences in
the autofluorescence ratio between the tumour types were
C

D

. Fresh resected specimen. b. No-signal group: In comparison to
sh resected specimen. d. High-signal group: In comparison to



Table 2 Autofluorescence ratio images of adenoma and
adenocarcinoma according to macroscopic type

No signal High signal Total

Non-polypoid type 7 (21.9) 25 (78.1) 32 (100)

Polypoid type 5 (9.9) 50 (90.1) 55 (100)

Total 12 (13.8) 75 (86.2) 87 (100)

Data presented as the number (percentage) of specimens
p = 0.115
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analysed by the Fisher’s exact test. All statistical analyses
were performed using the R environment for statistical
analyses (https://www.r-project.org/), with P < 0.05 con-
sidered statistically significant.

Results
The tumour autofluorescence on the ratio images accord-
ing to the histologic type is detailed in Table 1. Adenomas
and adenocarcinomas were depicted in 87 ratio images,
with 86.2 % (n = 75) in the High signal group. SSA/P was
depicted in 20 ratio images, and 70.0 % (n = 14) were in the
High signal group.
We further evaluated the appearance of the adenomas

and adenocarcinomas and SSA/Ps according to the macro-
scopic type. Macroscopic non-polypoid-type adenomas
and adenocarcinomas were depicted in 32 ratio images,
with 78.1 % (n = 25) in the High signal group, while
polypoid-type tumours were depicted in 55 images, with
90.1 % (n = 50) in the High signal group (Table 2).
Macroscopic non-polypoid type SSA/P was depicted in

12 ratio images, with 58.3 % (n = 7) in the High signal
group, and polypoid-type tumours were depicted on eight
images, with 87.5 % (n = 7) in the High signal group
(Table 3).
Regarding the interobserver variability of the ratio im-

ages, the kappa value between two gastroenterologists was
0.902, and the agreement was excellent.

Discussion
Generally, colonoscopy is performed to diagnose and treat
colorectal tumours. Effective prevention of colon cancer
requires that diagnostic modalities both detect and differ-
entiate between benign lesions and those requiring treat-
ment [26–29]. With the development of endoscopy,
clinicians are able to image colorectal lesions in detail,
including microscopic changes; however, the level of sensi-
tivity relies on the skill and experience of the operator.
Therefore, it is important to develop methods to easily
detect colorectal tumours.
Matsuda et al. proposed the superiority of AFI for de-

tecting polyps in the proximal colon compared with white
light endoscopy using a modified back-to-back method
[30]. However, another study reported that, though highly
sensitive at 99 %, AFI also had a low specificity of 35 % for
Table 1 Autofluorescence ratio images of colorectal tumours
according to histologic type

No signal High signal Total

Adenoma and adenocarcinoma 12 (13.8) 75 (86.2) 87 (100)

SSA/P 6 (30.0) 14 (70.0) 20 (100)

Total 18 (16.8) 89 (83.2) 107 (100)

Data presented as the number (percentage) of specimens
SSA/P, sessile serrated adenoma/polyp
p = 0.0997
the diagnosis of neoplastic and non-neoplastic colorectal
polyps [21]. Hence, despite the increased adenoma detec-
tion rate and high sensitivity in differentiating between neo-
plastic and non-neoplastic colorectal polyps, the clinical
utility of AFI has been limited by its low specificity, which
results in a high false-positive rate for colorectal neoplasia
diagnosis. Narrow-band imaging was reportedly compar-
able to chromoendoscopy for distinguishing between neo-
plastic and nonneoplastic polyps [31–37], but it is unable
to accurately differentiate between sessile serrated aden-
omas and non-neoplastic lesions, as 75 % of sessile serrated
adenomas were undiagnosed according to one report [21].
Using the dual-wavelength excitation method [18], fluor-

escence ratio (F365ex/F405ex) images were taken of colo-
rectal polyps with an EM-CCD imager and band pass
filter. The images clearly distinguished adenomatous le-
sions with distinct borders and adenomas. In our study,
86.2 % of adenomas and adenocarcinomas were clearly
depicted on autofluorescence images obtained with our
newly developed, high-sensitivity CMOS imager. On his-
topathologic analysis, 70.0 % of SSA/Ps and 86.2 % of ad-
enomas and adenocarcinomas on the ratio images were
categorized in the High signal group. Our findings suggest
that it is possible to detect not only adenomas and adeno-
carcinomas but also SSA/Ps by the dual-wavelength exci-
tation method. By contrast, Imaizumi et al. reported that
the differences in signal intensities were insufficient to dis-
tinguish normal mucosa and hyperplastic polyps [21]. This
suggests that the discrepancy in fluorescence reflects
histologic differences between hyperplastic polyps, SSA/
Ps, and adenomas and adenocarcinomas. SSA/Ps and
adenomas are premalignant lesions, and SSA/Ps are the
principal serrated precursors for colorectal cancer, while
hyperplastic polyps are not [38]. Although further study is
needed to enable diagnosis of the metabolic status of
Table 3 Autofluorescence ratio images of SSA/P tumours
according to macroscopic type

No signal High signal Total

Non-polypoid type 5 (41.7) 7 (58.3) 12 (100)

Polypoid type 1 (12.5) 7 (87.5) 8 (100)

Total 6 (30.0) 14 (70.0) 20 (100)

Data presented as the number (percentage) of specimens
SSA/P, sessile serrated adenoma/polyp
p = 0.325
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colorectal tumours based on the autofluorescence inten-
sity, the present results indicate that autofluorescence im-
aging may be able to detect SSA/Ps and adenomas and
adenocarcinomas, and differentiate these neoplasms from
hyperplastic polyps.
We observed colorectal superficial areas that fluoresced

upon light excitation. Most specimens of the adenoma and
adenocarcinoma and SSA/P were categorized in the High
signal group, and no significant difference was observed
according to macroscopic type, i.e. non-polypoid and polyp-
oid types. Our study suggests that autofluorescence may be
useful for visualizing colorectal tumours regardless of the
macroscopic type, but additional study of many more cases
is needed. The interobserver agreement of the classification
of the ratio images could be an issue; however, in our classi-
fication, excellent agreement was observed, with high kappa
values. However, there was a limitation to this study in
that it was performed ex vivo; thus, we did not evaluate
the clinical utility of endoscopic imaging for detection and
differentiation of colonic polyps. Further in vivo studies
should be performed when our dual-wavelength excitation
autofluorescence endoscopy technique, which operators
can easily perform in real-time, is developed. Clinical ap-
plication of dual-wavelength excitation autofluorescence
endoscopy requires incorporating a high-sensitivity image
sensor into the endoscope. Most gastrointestinal endo-
scopes are equipped with a normal range sensitivity CCD
image sensor. Therefore, we developed a new CMOS image
sensor with high sensitivity, low noise, and a wide dynamic
range at room temperature [22, 23, 39]. It may be possible
to incorporate this technology into endoscopes.
In our study, both adenomas and adenocarcinomas and

SSA/Ps can emit light using the dual-wavelength excita-
tion method, which suggests that inexperienced operators
can easily identify lesions using this technique without
oversight.
Conclusions
Although continued study is needed, we conclude that
surface autofluorescence images of colorectal lesions can
be obtained with our newly developed high-sensitivity
CMOS imager. Furthermore, our study indicates that
dual-wavelength excitation autofluorescence imaging is
indeed useful for the clinical detection of colorectal
tumours.
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