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Abstract
Objective  This study aimed to evaluate the predictive value of computed tomography (CT) texture features in the 
treatment response of patients with advanced pancreatic cancer (APC) receiving palliative chemotherapy.

Methods  This study enrolled 84 patients with APC treated with first-line chemotherapy and conducted texture 
analysis on primary pancreatic tumors. 59 patients and 25 were randomly assigned to the training and validation 
cohorts at a ratio of 7:3. The treatment response to chemotherapy was evaluated according to the Response 
Evaluation Criteria in Solid Tumors (RECIST1.1). The patients were divided into progressive and non-progressive 
groups. The least absolute shrinkage selection operator (LASSO) was applied for feature selection in the training 
cohort and a radiomics signature (RS) was calculated. A nomogram was developed based on a multivariate logistic 
regression model incorporating the RS and carbohydrate antigen 19-9 (CA19-9), and was internally validated using 
the C-index and calibration plot. We performed the decision curve analysis (DCA) and clinical impact curve analysis to 
reflect the clinical utility of the nomogram. The nomogram was further externally confirmed in the validation cohort.

Results  The multivariate logistic regression analysis indicated that the RS and CA19-9 were independent predictors 
(P < 0.05), and a trend was found for chemotherapy between progressive and non-progressive groups. The nomogram 
incorporating RS, CA19-9 and chemotherapy showed favorable discriminative ability in the training (C-index = 0.802) 
and validation (C-index = 0.920) cohorts. The nomogram demonstrated favorable clinical utility.

Conclusion  The RS of significant texture features was significantly associated with the early treatment effect of 
patients with APC treated with chemotherapy. Based on the RS, CA19-9 and chemotherapy, the nomogram provided 
a promising way to predict chemotherapeutic effects for APC patients.
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Introduction
Pancreatic cancer is the seventh leading cause of cancer 
death, and its incidence and mortality have been stable. 
It has been predicted that pancreatic cancer will exceed 
breast cancer as the third leading cause of cancer death 
by 2025 [1]. The 5-year survival rates of pancreatic can-
cers in Nordics countries is 6% [2]. Unfortunately, about 
80–85%of patients with pancreatic cancer are found 
to be advanced or metastatic which precludes curative 
resection [3]. Presently, most patients with advanced 
pancreatic cancer are treated with chemotherapy. The 
first-line chemotherapy includes FOLFIRINOX (oxali-
platin, irinotecan, fluorouracil, leucovorin), gemcitabine 
alone or combined with albumin-bound nab-paclitaxel 
[4, 5]. Despite significant progress in chemotherapy regi-
men, patients with APC respond differently to it. Previ-
ous studies showed that patients present poor responses 
to gemcitabine, which can be caused by the low expres-
sion of human equilibrative nucleoside transporter 1 
(hENT1). However, the expression of hENT1 is not a 
routine detection in clinical practice and a large propo-
tion of patients with APC even not received gemcitabine 
as first-line chemotherapy [6]. Among these problems, 
how to accurately evaluate the efficacy of chemotherapy 
at an early stage is still a challenging problem for clini-
cians when making clinical treatment decisions. Thus, 
there is an urgent need to find potential biomarkers to 
identify patients who can benefit from chemotherapy.

CT, compared with other effective methods like endo-
scopic ultrasound, is a noninvasive method in the diag-
nosis and treatment effect evaluation of pancreatic 
cancer [7]. However, conventional CT cannot quantita-
tively analyze tumor heterogeneity or predict therapeutic 
effects [8]. Fortunately, with the development of artificial 
intelligence, radiomics has played an important role in 
extracting quantitative features in medical images, which 
can be investigated to predict the efficacy and prognosis 
in targeted therapies, immunotherapies and radiotherapy 
[9]. Texture analysis is composed of various mathematical 
techniques, which can describe the grey-level patterns of 
images and play an important role in evaluating the spa-
tial organization of different tissues and organs [10].

Several studies have shown that texture analysis can 
be used to predict treatment response in pancreatic can-
cer. For example, Nasief et al. found delta radiomics can 
be used as a biomarker for early prediction of treatment 
response in neoadjuvant chemoradiation therapy [11]. 
Simpson et al. found radiomics features may contain 
predictive information about response to treatment for 
PDAC patients undergoing stereotactic body radiother-
apy (SBRT) [12]. Yue et al. found the predictive value of 
combining clinical features with PET-CT texture features 
in patients undergoing radiotherapy [13]. Nasief et al. 
found that combining delta-radiomics features and CA 

19-9 levels results in an earlier prediction of good and 
bad responders undergoing neoadjuvant chemoradia-
tion therapy [14]. To date, whether there is a correlation 
between CT texture features and first-line chemotherapy 
efficacy in patients with APC remains to be elucidated. 
Thus, this study aimed to determine the predictive value 
of pre-treatment CT texture features in APC patients 
receiving first-line chemotherapy.

Materials and methods
Patients
We retrospectively analyzed CT images of APC patients 
treated at Changzhou Second People’s Hospital Affiliated 
to Nanjing Medical University, between September 2016 
and June 2019. They were randomly divided into a train-
ing cohort with 59 patients and a validation cohort with 
25 patients. The inclusion criteria were as follows: (1) 
newly diagnosed and pathologically confirmed pancre-
atic adenocarcinoma; (2) absence of concurrent cancers 
at other sites; (3) TNM stage III or IV according to the 
8th edition of the TNM staging system; (4) no prior his-
tory of radiotherapy, chemotherapy, or other treatments; 
(5) complete CT imaging data before chemotherapy and 
after two cycles of chemotherapy; (6) complete baseline 
clinicopathological features, including the patients’ age, 
sex, chemotherapy regimen, treatment effect ,tumor loca-
tion, ECOG PS, TNM stage, CA19-9. The exclusion crite-
ria were as follows: (1) failure to complete the prescribed 
chemotherapy regimen as scheduled; (2) incomplete 
clinical data at baseline; (3) poor image quality. Demo-
graphic and clinicopathologic features were collected 
from the electronic medical records. Informed consent 
was obtained from each patient, and ethical approval 
was accepted by the Ethics committees of Changzhou 
Second People’s Hospital Affiliated to Nanjing Medical 
University.

Treatment response assessment
The short-term therapeutic response was evaluated 
based on the follow-up CT imaging before the third cycle 
of chemotherapy using the Response Evaluation Crite-
ria in Solid Tumors (RECIST 1.1) [15]. In our study, the 
patients were divided into two groups: with progressive 
disease (PD) and without progressive disease (SD or PR 
or CR).

CT image acquisition
Contrast-enhanced CT examinations were performed 
using a 128-row dual-source CT scanner (SOMATOM 
Definition Flash, Siemens, Germany) at 120  kV, tube 
current modulation, and 1  mm reconstructed section 
thickness. All patients were instructed to fast for at least 
8  h before administering intravenous contrast (Iohexol, 
1.5mL per kilogram of body weight, at a rate of 3 ml/s). 
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After the injection of contrast agent, patients were sub-
jected to double-helical scanning during the arterial and 
portal venous phases. The region of interest (ROI) was 
selected in primary pancreatic tumors during the arterial 
phase.

Image processing
ROIs were drawn on each slice of the primary pancre-
atic cancer using the software Labelme (version 3.11.2, 
http://labelme.csail.mit.edu). Then, ROIs were extracted 
for texture analysis using Local Image Features Extrac-
tion (LIFEx, version 5.10, https://www.lifexsoft.org/). 
In the segmented tumors, the volume of interest (VOI) 
and histogram were calculated as first-order features. 
For calculations of second and high-order texture fea-
tures, the number of grey levels used to resample the 
ROI content was set to 64.0. The Cartesian coordinates 
for spatial resampling were 2.0 mm (X-direction), 2.0 mm 
(Y-direction), and 1.0 mm (Z-direction). Texture features 
were evaluated using four texture matrices, including the 
grey-level co-occurrence matrix (GLCM), the grey-level 
run length matrix (GLRLM), the neighborhood grey-
level different matrix (NGLDM), and the grey-level zone 
length matrix (GLZLM). We used the texture features of 
the largest cross-section of each tumor to predict therapy 
response.

Statistical analysis
Statistical analysis was conducted using R software (ver-
sion 3.6.1, Institute for Statistics and Mathematics, 
Vienna, Austria) and SPSS statistical software (version 
21.0, SPSS Inc, IBM, Armonk, NY, U.S.A.). The Chi-
square test and independent samples t-test were used to 
investigate the differences between categorical variables 
and continuous variables. The correlations between tex-
ture variables were assessed using Pearson’s correla-
tion coefficient with the R package “psych”. The LASSO 
was applied for feature selection, and RS was calculated 
by summing the selected features weighted by their 
β-coefficients, where RS = 3.37022285 * GLZLM_LZLGE 
+ -0.04245328 * GLZLM_LGZE + 1.25470569 * Energy. 
The cut-off value of RS was determined according to 
the Youden’s J statistics (J = sensitivity + specificity − 1). 
Univariate analysis and multivariate logistic regression 
analysis were applied to investigate independent predic-
tive factors. A nomogram was developed using the R 
package “rms” to predict the treatment effect, and the 
discrimination power of the nomogram was evaluated by 
calculating the C-index. In addition, calibration plot was 
generated using bootstrapping with 1000 resamples. To 
evaluate the clinical utility of the nomogram, DCA was 
performed by quantifying the net benefits at different 
threshold probabilities, and the clinical impact curve was 
performed by quantifying the number of high risk at each 
threshold probability.

Results
Patients’ characteristics
The baseline clinicopathological characteristics of 
patients with APC in the training and validation cohorts 
were shown in Table  1. All the variables, including age, 
gender, Eastern Cooperative Oncology Group perfor-
mance status (ECOG PS), chemotherapy, effect, TNM 
stage, primary tumor location and CA19-9, were compa-
rable between the training and validation cohorts.

Correlations between texture parameters and treatment 
effect
The mean values and standard deviations of all texture 
features in the training cohort are shown in Table 2, and 
the values of these features were normalized for further 
analysis. There were no significant differences in GLCM 
parameters between the two groups with independent 
samples t-tests (P > 0.1, Table 2). In the histogram analy-
sis, the progressive group showed a higher level of energy 
than the non-progressive group (P = 0.059). In addition, 
in the GLRLM analysis, the progressive group showed 
lower levels of LGRE (P = 0.028), SRLGE (P = 0.029), and 
LRLGE (P = 0.025), but higher levels of GLNU (P = 0.070) 
compared with the non-progressive group. In the 
NGLDM analysis, only Coarseness (P = 0.076) differed 

Table 1  Baseline clinicopathological characteristics of patients 
with APC
Characteristics Training 

cohort
(n = 59)

Validation 
cohort
(n = 25)

P-value

Age (median, SD) 66 (9.5) 70 (11.3) 0.625

Gender

Male 35 (59.3%) 12 (48.0%) 0.339

Female 24 (40.7%) 13 (52.0%)

ECOG PS

0–1 13 (22.0%) 6 (24.0%) 0.844

2 46 (78.0%) 19 (76.0%)

Chemotherapy

Monotherapy 27 (45.8%) 10 (40.0%) 0.627

Combination therapy 32 (54.2%) 15 (60.0%)

Effect

PR 10 (16.9%) 4 (16.0%) 0.911

SD 23 (39.0%) 11 (44.0%)

PD 26 (44.1%) 10 (40.0%)

TNM stage

III 10 (16.9%) 7 (28.0%) 0.249

IV 49 (83.1%) 18 (72.0%)

Primary tumor location

Head and neck 31 (52.5%) 18 (72.0%) 0.098

Body and tail 28 (47.5%) 7 (28.0%)

CA19-9 (U/ml)

< 1000 40 (67.8%) 18 (72.0%) 0.703

≥ 1000 19 (32.2%) 7 (28.0%)

http://labelme.csail.mit.edu
https://www.lifexsoft.org/
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between the progressive and non-progressive groups. 
Moreover, in the GLZLM analysis, the progressive group 
had lower values of SZE (P = 0.064), LGZE (P = 0.019), 
SZLGE (P = 0.022), LZLGE (P = 0.020) and had greater 
levels of LZHGE (P = 0.062), GLNU (P = 0.067) than the 
non-progressive group.

Pearson’s correlation was used to investigate the corre-
lations between texture parameters in the training cohort 
(Fig.  1). The results indicated that some pairs of these 
parameters showed significant correlations.

Texture features selection and radiomic score
Based on the LASSO regression model, three texture fea-
tures related to the treatment effect were selected (Fig. 2). 
The final composition of the RS is: RS = 3.37022285 
* GLZLM_LZLGE + -0.04245328 * GLZLM_
LGZE + 1.25470569 * Energy. In this formula, each vari-
able was weighted using its β-coefficient derived from the 
LASSO model. As shown in Table 3, the RS was an inde-
pendent predictor in the multivariate logistic regression 
analysis (P = 0.044).

Correlations between clinicopathological characteristics 
and treatment effect
As shown in Table 3, in the univariate analysis, the non-
progressive group was treated more by combination 
therapy than the progressive group (P = 0.033). The pro-
gressive group had a higher level of CA19-9 compared 
with the non-progressive group (P = 0.012). However, 
other factors including age, gender, ECOG PS, TNM 
stage, and primary tumor location, showed no signifi-
cant differences between the two groups. Furthermore, 
multivariate logistic regression analysis showed RS and 
CA19-9 were independent predictive factors (P < 0.05), 
and a trend was found for chemotherapy (P = 0.072) 
between the two groups.

Development and validation of the radiomics nomogram
A nomogram of the RS, CA19-9 and chemotherapy 
was constructed (Fig.  3A). The probability of high- or 

Table 2  Texture features after normalization in the training 
cohort
Texture parameter SD + PR (n = 33) PD (n = 26) P-value

Mean SD Mean SD
Histogram

Skewness 0.602 0.084 0.571 0.088 0.178

Kurtosis 0.053 0.049 0.073 0.069 0.199

Entropy 0.555 0.138 0.489 0.167 0.104

Energy 0.138 0.070 0.184 0.110 0.059*

GLCM

Homogeneity 0.489 0.113 0.529 0.134 0.219

Energy 0.023 0.010 0.024 0.011 0.623

Contrast 0.070 0.047 0.062 0.048 0.482

Correlation 0.745 0.126 0.720 0.140 0.482

Entropy 0.454 0.199 0.441 0.174 0.781

Dissimilarity 0.226 0.078 0.206 0.085 0.371

GLRLM

SRE 0.956 0.019 0.947 0.022 0.120

LRE 0.615 0.051 0.637 0.059 0.136

LGRE 0.042 0.032 0.027 0.013 0.028**

HGRE 0.323 0.131 0.356 0.129 0.337

SRLGE 0.042 0.032 0.027 0.013 0.029**

SRHGE 0.366 0.150 0.398 0.141 0.400

LRLGE 0.045 0.032 0.029 0.013 0.025**

LRHGE 0.189 0.076 0.219 0.090 0.169

GLNU 0.077 0.072 0.152 0.218 0.070*

RLNU 0.169 0.158 0.238 0.225 0.167

RP 0.941 0.025 0.930 0.029 0.124

NGLDM

Coarseness 0.179 0.123 0.129 0.078 0.076*

Contrast 0.001 0.001 0.001 0.001 0.674

Busyness 0.176 0.117 0.213 0.127 0.250

GLZLM

SZE 0.850 0.052 0.822 0.061 0.064*

LZE 0.101 0.042 0.117 0.055 0.208

LGZE 0.047 0.035 0.029 0.016 0.019**

HGZE 0.344 0.139 0.377 0.135 0.359

SZLGE 0.045 0.035 0.028 0.016 0.022**

SZHGE 0.396 0.165 0.417 0.146 0.600

LZLGE 0.060 0.038 0.041 0.018 0.020**

LZHGE 0.028 0.014 0.040 0.032 0.062*

GLNU 0.101 0.084 0.180 0.223 0.067*

ZLNU 0.194 0.163 0.245 0.194 0.273

ZP 0.263 0.027 0.252 0.031 0.162

Fig. 1  The correlations between texture parameters. The blue circles 
represent a positive correlation, and red circles represent a negative cor-
relation. The darker the color of the circle is, the higher the correlation be-
tween the two texture parameters is
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low-risk of disease progression after two cycles of che-
motherapy was determined based on the total points of 
the radiomics nomogram. Furthermore, the calibration 
curve showed that the performance of the nomogram 
was similar to the ideal model and had good prediction 
capability (Fig.  3B). The nomogram achieved good dis-
criminative ability in the training (C-index = 0.802) and 
validation (C-index = 0.920) cohorts. Comparably, the 
nomogram comprised of CA19-9 and chemotherapy only 
achieved moderate discriminative ability in the train-
ing (C-index = 0.705) and validation (C-index = 0.805) 
cohorts.

The decision curve analysis (DCA) and clinical impact 
curve of the nomogram are shown in Fig. 4. The decision 
curves show that with a threshold probability > 0.4, using 
the radiomics nomogram to predict the efficacy of first-
line therapy treatment response added more benefit than 
the scheme for all patients with a risk of disease progres-
sion after treatment or no patients with risk of disease 
progression after treatment.

Discussion
In this study, RS was identified as a potential predictive 
biomarker for patients with APC treated with first-line 
chemotherapy. Furthermore, we integrated CA19-9, 
chemotherapy and RS to generate an innovative indi-
vidualized radiomics model, in order to character-
ize PD responder and non-PD responder to first-line 

Table 3  Comparison between clinicopathological characteristics of APC according to treatment effect in the training cohort
Characteristics SD + PR (n = 33) PD (n = 26) Univariate analysis Multivariate analysis

OR 95%CI P-value OR 95%CI P-value
Age (median, SD) 66 (9.29) 66.5 (9.8) 1.018 0.963–1.076 0.521

Gender

Male 20 (60.6%) 15 (57.7%) 0.886 0.312–2.521 0.821

Female 13 (39.4%) 11 (42.3%)

ECOG PS

0–1 9 (27.3%) 4 (15.4%) 2.062 0.555–7.661 0.280

2 24 (72.7%) 22 (84.6%)

Chemotherapy

Monotherapy 11 (33.3%) 16 (61.5%) 3.200 1.096–9.343 0.033 2.948 0.910–9.553 0.072

Combination therapy 22 (66.7%) 10 (38.5%)

TNM stage

III 5 (15.2%) 5 (19.2%) 0.750 0.192–2.930 0.679

IV 28 (84.8%) 21 (80.8%)

Primary tumor location

Head and neck 15 (45.5%) 16 (61.5%) 0.521 0.183–1.482 0.222

Body and tail 18 (54.5%) 10 (38.5%)

CA19-9 (U/ml)

< 1000 27 (81.8%) 13 (50.0%) 4.500 1.394–14.528 0.012 3.703 1.056–12.988 0.041

≥ 1000 6 (18.2%) 13 (50.0%)

Radiomics signature

< 0.045 24 (72.7%) 11 (42.3%) 3.636 1.220-10.836 0.020 3.382 1.031–11.101 0.044

≥ 0.045 9 (27.3%) 15 (57.7%)

Fig. 2  Selection of textural features using the LASSO regression. Red dots 
show average deviance values for each model at the given λ, and the verti-
cal bars through the red dots indicate the upper and lower values of the 
binomial deviance. The vertical black lines show the optimal values of λ, 
where the model provides its best fit to the data
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chemotherapy and determine the clinical application of 
the radiomics model in patients with APC.

Previous studies have assessed the predictive signifi-
cance of radiomics features for the treatment response 
in various malignancies [16–18]. Several studies have 
reported that pre-treatment radiomics features are asso-
ciated with therapeutic effects and survival after adjuvant 
chemotherapy or radiotherapy in patients with PDAC 
[19, 20]. For unresectable APC patients, Cheng et al. 
reported that the combination of pretreatment SD with 
tumor size achieved an early prediction of treatment 
with chemotherapy [21]. Salinas-Miranda et al. found 
that the CT texture feature of cluster tendency was a 
significant prognostic factor treated with chemotherapy 
[22]. However, most studies focused on patients’ survival 
after treatment, but not the response. In this study, we 

found that the final selected texture features, GLZLM_
LZLGE, GLZLM_LGZE, and Energy could predict the 
early efficacy of first-line chemotherapy in patients with 
APC, and distinguish the PD responder from non-PD 
responders. The RS was an independent predictor of the 
early response to chemotherapy in the training cohort 
(p < 0.05).

In this study, the final selected texture features, 
GLZLM_LZLGE, GLZLM_LGZE, and Energy, used 
for the RS were significant predictors of chemothera-
peutic effects. Except for energy, which belongs to the 
first-order feature, the other two were second-order tex-
ture features belonging to the GLZLM. The LZLGE and 
LGZE were based on GLZLM, representing the size of 
the homogeneous regions with the same gray level in 
three dimensions without a specific orientation. LZLGE 

Fig. 4  Decision curve analysis for the radiomics nomogram (A). The gray line shows the assumption that all patients had the risk of disease progression 
after treatment. The black line represents the assumption that no patients had the risk of disease progression after treatment. Clinical impact curve for the 
radiomics nomogram. The red curve represents the number of people classified by the nomogram as positive (high risk) at each threshold probability. 
The curve (Number high risk with event) is the number of true positives at each threshold probability (B)

 

Fig. 3  Developed the radiomics nomogram to predict the risk of disease progression after treatment with chemotherapy in a given patient (A). The 
calibration curves for the nomogram. The diagonal dotted line represents the perfect prediction of an ideal model. The apparent line represents the 
uncorrected performance of the nomogram, and the bias-corrected line represents the bias-corrected performance using bootstrapping with 1000 
resamples (B)
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shows the distribution of the long homogeneous zones 
with low gray levels [23]. LGZE represents the distribu-
tion of low gray-level zones [24]. Several studies found 
that tumor heterogeneity was correlated with a poor 
response to chemotherapy or chemoradiotherapy in 
patients with APC [11, 25]. The lower was GLZLM_
LZLGE or GLZLM_LGZE, the more heterogeneous was 
the texture. It has been reported that pancreatic cancer 
cells induce fibrosis by increasing extracellular matrix 
synthesis, which may lead to chemoresistance [26]. Thus, 
our results could be interpreted that the higher value of 
GLZLM_LZLGE or GLZLM_LGZE, the more homoge-
neous the tumor was, indicating less related fibrosis and 
higher sensitivity to chemotherapy. Energy reflects the 
homogeneity of gray distribution and the roughness of 
texture. The more homogeneous the image, the higher 
the energy [27]. However, it has also been reported that 
homogenous texture may indicate higher cellular density, 
reducing the amount of drug delivered to the tumor, lead-
ing to chemotherapy resistance [28]. Thus, our results 
could be interpreted that the higher value of Energy, the 
higher cellular density the tumor had, indicating lower 
sensitivity to chemotherapy.

Several studies found that the preoperative elevated 
CA19-9 level was a significant independent factor for 
predicting poor prognosis in patients with PDAC [29–
32]. And other studies also found the baseline CA19-9 
level was an independent risk factor for prognosis in 
patients with PDAC receiving Gemcitabine together 
with nab-paclitaxel [33, 34]. Our result was consis-
tent with previous findings. Our study found that the 
CA19-9 level was an independent predictive marker in 
early chemotherapeutic effects for APC patients. The 
multivariate logistic regression analysis showed that the 
chemotherapy did not demonstrate enough predictive 
ability (P = 0.072), which made it seem unnecessary for 
inclusion in the model. However, several studies found 
that chemotherapy was an independent prognostic factor 
in the outcome of advanced pancreatic cancer patients 
[35, 36]. Moreover, several studies found that nab-pacli-
taxel plus gemcitabine combination therapy significantly 
improved survival than gemcitabine monotherapy in 
patients with APC [37, 38]. The lack of statistical signifi-
cance of chemotherapy in the validation cohort may be 
due to the relatively small sample size and confounding 
by other factors [39]. The nomogram incorporating RS, 
CA19-9 and chemotherapy showed better discrimina-
tive ability in the training (C-index = 0.802) and validation 
(C-index = 0.920) cohorts than the one incorporating only 
CA19-9 and chemotherapy.

Based on the total points of the nomogram, a high- or 
a low-risk probability of disease progression after two 
cycles of chemotherapy treatment was determined. The 
nomogram calibration curve showed good agreement 

between the predicted and observed outcomes. The 
individualized prediction of treatment effect using the 
nomogram based on CT texture features and routine 
noninvasive tests is necessary for clinicians to make more 
precise decisions, which aligns with the trend of person-
alized medicine. Specifically, if a patient is determined 
to have a high-risk probability of disease progression 
according to the nomogram, more aggressive treatment 
is prone to be given. Patients with APC will benefit from 
this novel approach by providing risk stratification and 
decision support. Moreover, DCA and clinical impact 
curve were used to ensure that the nomogram it had 
good clinical utility. These findings indicated that it was 
an effective way to predict the early treatment response 
for APC patients by using CT texture feature-based 
nomogram.

Our study also has some limitations. First, the sample 
size is relatively small. We will continue to expand the 
sample size and conduct a multi-center study to confirm 
our findings. Second, manual segmentation was adopted 
in this study, which could introduce subjective bias to a 
certain extent. Third, our study only analyzed the images 
of patients from the arterial phase; although the lesions 
are well shown in the arterial phase, we still need to 
explore the noncontract phase or portal vein phase to 
enrich the results we investigated. Furthermore, our 
study is based on 2D images, and the lesion may not be 
fully reflected in the largest cross-section of the tumor, so 
we will use 3D images to extract the entire tumor in the 
future.

In conclusion, we developed a pre-treatment CT-based 
radiomics nomogram to predict the early efficacy of first-
line chemotherapy in patients with APC, distinguish the 
PD responder from non-PD responder to first-line che-
motherapy treatment. Our initial results showed that the 
nomogram, including RS, CA19-9 and chemotherapy 
provide a promising way to predict early chemotherapeu-
tic effects for APC patients.
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