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Abstract 

Background Metabolism dysfunction-associated fatty liver disease (MAFLD), is the most common chronic liver dis-
ease. Few MAFLD predictions are simple and accurate. We examined the predictive performance of the albumin-to-
glutamyl transpeptidase ratio (AGTR), plasma atherogenicity index (AIP), and serum uric acid to high-density lipopro-
tein cholesterol ratio (UHR) for MAFLD to design practical, inexpensive, and reliable models.

Methods The National Health and Nutrition Examination Survey (NHANES) 2007–2016 cycle dataset, which con-
tained 12,654 participants, was filtered and randomly separated into internal validation and training sets. This study 
examined the relationships of the AGTR and AIP with MAFLD using binary multifactor logistic regression. We then 
created a MAFLD predictive model using the training dataset and validated the predictive model performance 
with the 2017–2018 NHANES and internal datasets.

Results In the total population, the predictive ability (AUC) of the AIP, AGTR, UHR, and the combination of all 
three for MAFLD showed in the following order: 0.749, 0.773, 0.728 and 0.824. Further subgroup analysis showed 
that the AGTR (AUC1 = 0.796; AUC2 = 0.690) and the combination of the three measures (AUC1 = 0.863; AUC2 = 0.766) 
better predicted MAFLD in nondiabetic patients. Joint prediction outperformed the individual measures in predict-
ing MAFLD in the subgroups. Additionally, the model better predicted female MAFLD. Adding waist circumference 
and or BMI to this model improves predictive performance.

Conclusion Our study showed that the AGTR, AIP, and UHR had strong MAFLD predictive value, and their combina-
tion can increase MAFLD predictive performance. They also performed better in females.
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Background
Metabolism dysfunction-associated fatty liver disease 
(MAFLD) is hepatic steatosis with overweight/obesity, 
type-2 diabetes, or metabolic dysregulation, as described 
at an international expert consensus meeting [1–3]. 
MAFLD is the most common chronic liver disease, which 
raises the risk of cardiovascular disease [4] and all-cause 
death [5, 6]. However, as is known, the gold standard of 
diagnosis for fatty liver is pathology biopsy, which is an 
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invasive procedure with potential negative effects [7]. 
Thus, it is of high clinical importance and value to inves-
tigate practical, straightforward, and reliable predictors 
of fatty liver disease.

The serum uric acid to high-density lipoprotein cho-
lesterol ratio (UHR) is a recently proposed inflamma-
tory marker that has been shown to be associated with 
the development of NAFLD, metabolic syndrome, dia-
betes mellitus, insulin resistance, and cardiovascular risk 
[8–10]. The plasma atherogenicity index (AIP), defined as 
the logarithm of the triglyceride to high-density lipopro-
tein cholesterol (HDL) ratio (TG/HDL-C), is significantly 
elevated in patients with fatty liver disease and may be 
a potential indicator for identifying fatty liver disease 
[11]. It has been previously shown to be associated with 
NAFLD [12], MAFLD [13, 14], cardiovascular risk [15], 
and metabolic risk [16]. Albumin (ALB)/alkaline phos-
phatase (ALP), a biological measure of liver function, 
has been shown in prior research to be a reliable inde-
pendent predictor of NAFLD and MAFLD [17]. Intra-
hepatic cholestasis may be involved in the development 
of NAFLD or MAFLD [18]. In contrast, sludgy hepatitis 
can be reflected by direct bilirubin, glutamyl transpepti-
dase (GGT) and ALP. Albumin transports bilirubin and 
cholesterol are an important indicators of liver function. 
Currently, an important and practical indicator used to 
assess liver function in liver cancer is the ALBI (albumin-
bilirubin) score [19], which can be used to predict cirrho-
sis in the loss-of-compensation phase [20].

Although NAFLD and MAFLD share commonalities, 
the diagnostic criteria are significantly different, and 
thus, many predictors of NAFLD still need to be fur-
ther explored in MAFLD. Consequently, we examined 
the predictive ability of the AGTR, UHR, AIP and their 
combination for MAFLD using the National Health and 
Nutrition Examination Survey (NHANES) 2007–2018 
dataset, to design a practical, inexpensive, and reliable 
predictive tool for MAFLD.

Methods
Database
Data were obtained from the NHANES database, which 
uses a complex, hierarchical, multistage, probabilistic clus-
tering design to assess health and nutritional status in the 
U.S. All participants provided written informed consent.

Definitions and inclusion criteria
The analysis included subjects 18  years of age or older 
and included demographics (age, sex, race, poverty-to-
income ratio), triglycerides, HDL, blood uric acid, GGT, 
albumin, data relevant to the diagnosis of MAFLD, and 
a validated FibroScan. After excluding participants with 

no key biochemistry data (blood uric acid, triglycerides, 
glycosylated hemoglobin (HbA1c), HDL, GGT, albumin), 
incomplete transient elastography data and data that 
were not diagnostic of MAFLD, a total of 12,654indi-
viduals were finally enrolled. The NHANES database 
2007–2016 cycle dataset ultimately included 12,654 sub-
jects for statistical analyses and predictive modeling, and 
predictive model validation was performed using the 
2017–2018 cycle dataset, with inclusion criteria and a 
participant stratification algorithm, as shown in Fig. 1.

Definition of the ending variable MAFLD
The diagnosis of MAFLD is based on histologic (biopsy) 
imaging or blood biomarker evidence of hepatic fat 
accumulation (hepatic steatosis) and one of the follow-
ing three criteria: overweight/obesity, the presence of 
type-2 diabetes mellitus (T2DM), or evidence of meta-
bolic derangement. Patients with fatty liver are identified 
by United States Fatty Liver Index (USFLI) ≥30 in the 
NHANES 2007–2016 dataset or by controlled attenua-
tion parameter (CAP) > 274 [21] in the 2017–2018 dataset 
and have two of the following items [1]: (i) waist circum-
ference (WC) > 102  cm for men or > 88  cm for women; 
(ii) blood pressure 130/85 mmHg or related medication; 
(iii) fasting plasma triglycerides > 1.70 mmol/L or related 
medication; (iv) plasma high-density lipoprotein (HDL) 
cholesterol < 1.0  mmol/L for males or < 1.3  mmol/L for 
females or related medication; (v) preexisting diabe-
tes mellitus (fasting blood glucose 5.6–6.9  mmol/L or 
hemoglobin A1C 39–47 mmol/mol); and (vi) homeosta-
sis model assessment of insulin resistance (HOMA-IR) 
score) ≥2.5.

Definition of research variables
AIP = log10(TG/HDL-c) [22]; UHR = serum uric acid 
(mg/dL)/HDL-c(mg/dL);AGTR = albumin (g/L)/GGT (U/L).

Other variable definitions
Participants with at least one of the following conditions 
are defined as having diabetes in the NHANES: 1. diag-
nosed with diabetes by a self-reported prior physician or 
currently being treated for glycemic control (use of insu-
lin or oral hypoglycemic agents); and 2. laboratory results 
met the following criteria: 1) glycated hemoglobin ≥ 6.5% 
and 2) fasting blood glucose > 7.0  mmol/L. Hyperten-
sion was defined as self-reported physician-diagnosed 
hypertension or being on prescribed medication. Blood 
pressure was assessed using an average of 3 consecu-
tive standardized blood pressure readings. Alcohol con-
sumption was categorized as moderate, excessive and no 
alcohol consumption [23]. Physical activity was defined 
as follows: 1. Light activity; 2. moderate activity; and 3. 
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High-intensity activity [24]. A “smoker” was defined as an 
adult who had smoked 100 cigarettes in his or her life-
time, and a “never smoker” was defined as any adult who 
had never smoked or had smoked fewer than 100 ciga-
rettes in his or her lifetime. Homeostasis model assess-
ment of insulin resistance (HOMA-IR) score = (fasting 
insulin in mIU/mL) × (fasting glucose in mg/dL)/405 [25]. 
Total protein intake and vitamin C were extracted from 
2-day dietary interview data and averaged over two days. 
NCHS Ethics Review Board supported the research. Fur-
thermore, written informed consent was received from 
each subject [26].

Statistical analysis
The study is consistent with the transparent report-
ing of a multivariable prediction model for individual 
prognosis or diagnosis (TRIPOD): the TRIPOD state-
ment [27]. NHANES uses a complex survey design to 
ensure national representativeness, and data analysis 
of the complex sampling design was conducted under 
the guidance of the NCHS. Normally distributed vari-
ables are expressed as means (standard deviations) and 
non-normally distributed variables are expressed as 
medians (quartiles). Categorical variables are shown as 

unweighted counts (weighted %). Categorical variables 
were tested with weighted chi-square tests, continuous 
variables were tested using t tests for normally distrib-
uted data, and nonnormally distributed data were tested 
using Wilcoxon rank sum tests. Weighted univariate 
and multivariate logistic regression models were used 
to identify associations between the study variables and 
the outcome variable (MAFLD), and the data were dis-
played as odds ratios (ORs) and 95% confidence intervals 
(CIs) for unadjusted, partially adjusted, and fully adjusted 
confounders. The confounders for the partial adjust-
ment are: age, gender, race, and income-poverty ratio, 
and the full adjustment adds the following factors to the 
partial adjustment: BMI, physical activity, diabetes mel-
litus, alkaline phosphatase, mercury, cadmium, transami-
nases, smoking, drinking, protein intake, vitamin C and 
LDL. We considered two-sided P values less than 0.05 as 
indicative of statistical significance. For model develop-
ment, the NHANES database 2007–2016 cycle dataset 
(12,654 participants in total) was randomly divided into 
two groups (8,858 for the training dataset and 3,796 for 
the internal validation dataset) in a 7:3 ratio. The train-
ing dataset was used to develop the model, internal vali-
dation was performed using the validation dataset, and 

Fig. 1 Flow chart
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secondary validation was performed using the dataset 
from the NHANES 2017–2018 cycle. The R program-
ming language was used for all data extraction and sta-
tistical analyses (R version 4.1.2). The strategy for dealing 
with missing values of covariates in this study: if the 
number of missing < 20% used multiple interpolation 
(mi packages for interpolation), more than 20% were 
excluded from the data. Missing values for study vari-
ables as well as key variables for the diagnosis of MAFLD 
were simply excluded. Use the gtsummary package to 
construct the output of the prediction model. The qROC 
package plots the ROC curve along with the output AUC 
value.

Results
Baseline Characteristics of the Subjects
The baseline characteristics of the subjects are shown in 
Table  1 to Table  4. In the Tables  1 and 2, of the 12,654 
subjects, 4020 patients were diagnosed with MAFLD 
(32%), with a median age of 53 years, and 8634 were non-
MAFLD patients (68%), with a median age of 43  years. 
ALT, TC, ALP, CRE, BMI, WC, AIP, and UHR were 
higher in MAFLD patients than in non-MAFLD patients 
(p < 0.05). Tables 3 and 4 show that the training set’s base-
line information is similar to the internal and secondary 
validation sets.

AGTR, AIP and MAFLD correlation analysis in NHANES 
2007–2016
The UHR has been shown to be associated with NAFLD 
in many studies [28–33]. Thus, only AIP, AGTR and 
MAFLD were analyzed for correlation. The results of the 
analysis are shown in Table 5. In the risk association anal-
ysis of AIP quartiles with MAFLD, the AIP was signifi-
cantly associated with MAFLD in models 1–3. In Model 
3, the odds ratio (OR) values of the second, third, and 
fourth quartiles of AIP were 1.81 (95% CI: 1.35–2.44), 
3.32 (95% CI:(2.61- 4.21), and 7.27 (95% CI: 5.47–9.65), 
respectively, which were significantly different (P < 0.001) 
independent risk factors. The results of logistic regres-
sion analysis of the relationship between the AGTR and 
MAFLD showed that the odds ratios (ORs) in Model 1, 
Model 2, and Model 3 were 0.31 (95% CI: 0.29–0.33), 
0.30 (95% CI: 0.28–0.32), and 0.30 (95% CI: 0.27–0.33), 
respectively, with a p value of less than 0.001, which indi-
cated a statistically significant difference. The AGTR was 
an independent protective factor for MAFLD.

Predictive results of AGTR, UHR, and AIP on MAFLD
Using the test set extracted from five cycles of NHANES 
data from 2007–2016 for testing the predictive model, the 

Table 1 Basic characteristics of participants according to MAFLD 
from NHANES 2007–2016

AGTR  Albumin to glutamyl transpeptidase ratio, AIP Plasma atherogenicity index, 
UHR Serum uric acid to high-density lipoprotein cholesterol ratio
1 n (unweighted)(%); Median (IQR)
2 chi-squared test with Rao & Scott’s second-order correction; Wilcoxon rank-
sum test for complex survey samples; t-test adapted to complex survey samples

Characteristic Non-MAFLD,
N = 8634(68%)1

MAFLD,
N = 4020 (32%)1

p-value2

Sex  < 0.001

Male 3,981(45%) 2,231(57%)

FeMale 4,653(55%) 1,789(43%)

Age 43 (30, 57) 53 (40, 64)  < 0.001

BMI (kg/m2) 26 (23, 29) 33 (30, 38)  < 0.001

Ratio of income to poverty 2.92 (1.39, 4.94) 2.72 (1.43, 4.67) 0.088

Race  < 0.001

Mexican American 1,421(9.1%) 610(7.9%)

Other Hispanic 892(5.7%) 547(6.5%)

Non-Hispanic White 3,465(66%) 1,851(71%)

Non-Hispanic Black 1,789(11%) 694(8.6%)

Other Race - 1,067(8.3%) 318(5.7%)

AIP -0.15 (0.30) 0.16 (0.31)  < 0.001

AGTR 2.65 (1.95, 3.50) 1.50 (0.96, 2.11)  < 0.001

UHR 0.09 (0.07, 0.12) 0.14 (0.10, 0.17)  < 0.001

TC (mmol/l) 1.01 (0.71, 1.41) 1.65 (1.15, 2.33)  < 0.001

CRE(umol/L) 307 (75) 366 (85)  < 0.001

WC (cm) 92 (12) 114 (14)  < 0.001

Hypertension, n (%)  < 0.001

NO 6,359(77%) 1,917(49%)

Yes 2,275(23%) 2,103(51%)

Overweight/Obesity  < 0.001

NO 3,738(44%) 173(3.8%)

Yes 4,896(56%) 3,847(96%)

Activity  < 0.001

Light 1,875(18%) 1,270(28%)

Moderate 3,330(38%) 1,656(42%)

Vigorous 3,429(44%) 1,094(30%)

ALB(g/L) 43.1 (3.3) 42.1 (3.2)  < 0.001

Drinking  < 0.001

Never 2,178(20%) 1,147(24%)

Moderate 745(9.1%) 475(12%)

Excessive 5,711(71%) 2,398(64%)

ALP(U/L) 61 (50, 74) 68 (56, 83)  < 0.001

ALT(U/L) 19 (15, 25) 27 (20, 37)  < 0.001

Diabetes, n (%)  < 0.001

NO 8,023(95%) 3,099(81%)

Yes 611(4.8%) 921(19%)

Smoking  < 0.001

NO 5,044(58%) 2,050(50%)

Yes 3,590(42%) 1,970(50%)

Protein (gm) 82 (34) 84 (35) 0.022

Vitamin C (mg) 68 (33, 117) 57 (27, 107)  < 0.001

Mercury, total (umol/L) 8 (12) 7 (10)  < 0.001

Blood cadmium (nmol/L) 4.5 (5.4) 4.3 (5.3) 0.2
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Table 2 Basic characteristics of participants according to MAFLD 
from NHANES 2017–2018

AGTR  Albumin to glutamyl transpeptidase ratio, AIP Plasma atherogenicity index, 
UHR Serum uric acid to high-density lipoprotein cholesterol ratio
1 n (unweighted)(%); Median (IQR)
2 chi-squared test with Rao & Scott’s second-order correction; Wilcoxon rank-
sum test for complex survey samples; t-test adapted to complex survey samples

Characteristic Non-MAFLD,
N = 1318(58%)1

MAFLD,
N = 981(42%)1

p-value2

Sex  < 0.001

Male 577(42%) 566(60%)

FeMale 741(58%) 415(40%)

Age 42 (28, 58) 53 (38, 64)  < 0.001

BMI (kg/m2) 26 (23, 30) 32 (29, 36)  < 0.001

Ratio of income to poverty 3.04 (1.48, 4.98) 3.41 (1.70, 5.00) 0.039

Race  < 0.001

Mexican American 139(7.0%) 184(12%)

Other Hispanic 114(6.3%) 102(7.1%)

Non-Hispanic White 456(64%) 342(62%)

Non-Hispanic Black 334(12%) 170(7.7%)

Other Race 275(10%) 183(10%)

AIP -0.12 (0.27) 0.18 (0.31)  < 0.001

AGTR 2.59 (1.76, 3.50) 1.65 (1.06, 2.28)  < 0.001

UHR 0.09 (0.07, 0.12) 0.13 (0.10, 0.16)  < 0.001

TC (mmol/l) 1.04 (0.78, 1.52) 1.76 (1.25, 2.45)  < 0.001

CRE(umol/L) 300 (79) 353 (86)  < 0.001

WC (cm) 92 (14) 112 (15)  < 0.001

Hypertension, n(%)  < 0.001

NO 945(78%) 508(56%)

YES 373(22%) 473(44%)

Overweight/Obesity  < 0.001

NO 564(43%) 62(4.4%)

YES 754(57%) 919(96%)

Activity  < 0.001

Light 278(17%) 267(21%)

Moderate 408(28%) 361(39%)

Vigorous 632(56%) 353(39%)

ALB(g/L) 41.3 (3.3) 40.9 (3.2) 0.2

Drinking 0.5

Never 469(41%) 313(39%)

Moderate 477(39%) 375(39%)

Excessive 372(19%) 293(23%)

ALP(U/L) 69 (56, 85) 77 (64, 94)  < 0.001

ALT(U/L) 16 (12, 22) 22 (16, 32)  < 0.001

Diabetes, n (%)  < 0.001

NO 1,214(96%) 767(82%)

YES 104(4.2%) 214(18%)

Smoking 0.6

NO 796(58%) 557(56%)

YES 522(42%) 424(44%)

Protein (gm) 80 (38) 84 (37) 0.059

Vitamin C (mg) 62 (28, 107) 57 (26, 104) 0.6

Blood mercury, total (nmol/L) 7 (11) 7 (11) 0.8

Blood cadmium (nmol/L) 4.2 (5.3) 3.5 (4.9) 0.068

Table 3 Basic characteristics of participants according to train 
and internal validation set

Characteristic Train Set,
N = 8858(69%)1

Validation1,
N = 3796(31%)1

p-value2

Sex 0.7

Male 4,354(49%) 1,858(49%)

FeMale 4,504(51%) 1,938(51%)

Age 46 (32, 60) 46 (32, 60) 0.8

BMI (kg/m2) 28 (24, 32) 28 (24, 32) 0.8

Ratio of income to pov-
erty

2.81 (1.37, 4.81) 2.96 (1.47, 4.97) 0.10

Race 0.5

Mexican American 1,441(8.9%) 590(8.5%)

Other Hispanic 1,014(6.0%) 425(5.8%)

Non-Hispanic White 3,704(67%) 1,612(68%)

Non-Hispanic Black 1,734(10%) 749(10%)

Other Race 965(7.6%) 420(7.1%)

AIP -0.05 (0.34) -0.05 (0.33) 0.7

MAFLD 0.3

NO 6,044(68%) 2,590(69%)

YES 2,814(32%) 1,206(31%)

AGTR 2.26 (1.48, 3.13) 2.26 (1.52, 3.15) 0.4

UHR 0.10 (0.07, 0.14) 0.11 (0.08, 0.14) 0.5

TC (mmol/l) 1.15 (0.79, 1.72) 1.17 (0.81, 1.75) 0.3

CRE(umol/L) 325 (83) 327 (82) 0.4

WC (cm) 99 (16) 99 (17) 0.9

Hypertension, n (%) 0.3

NO 5,798(68%) 2,478(69%)

YES 3,060(32%) 1,318(31%)

Overweight/Obesity 0.8

NO 2,738(31%) 1,173(31%)

YES 6,120(69%) 2,623(69%)

Activity 0.6

Light 2,222(21%) 923(21%)

Moderate 3,472(39%) 1,514(39%)

Vigorous 3,164(39%) 1,359(41%)

ALB(g/L) 0.5

Mean (SD) 42.8 (3.3) 42.8 (3.3)

Drinking 0.8

Never 2,314(21%) 1,011(21%)

Moderate 862(10%) 358(9.7%)

Excessive 5,682(69%) 2,427(69%)

ALP(U/L) 63 (52, 77) 63 (52, 76) 0.10

ALT(U/L) 21 (16, 29) 21 (16, 28) 0.6

Diabetes, n (%) 0.8

NO 7,821(91%) 3,301(91%)

YES 1,037(9.2%) 495(9.4%)

Smoking 0.059

NO 4,910(55%) 2,184(57%)

YES 3,948(45%) 1,612(43%)

Protein (gm) 83 (34) 83 (35) 0.6

Vitamin C (mg) 64 (30, 114) 65 (31, 115) 0.8



Page 6 of 17Li et al. BMC Gastroenterology          (2024) 24:109 

receiver-operating characteristic curve (ROC) and detailed 
information are shown in Table 6 and Fig. 2A, demonstrat-
ing the predictive ability (AUC) of the AIP, AGTR, UHR, 
and the combination of all three for MAFLD in the fol-
lowing order: 0.749 (95% CI: 0.733–0.765), 0.773 (95% CI: 
0.757–0.788), 0.728 (95% CI: 0.711–0.745), and 0.824 (95% 
CI: 0.810–0.837). The predictive ability of the first three 
alone for MAFLD was similar, whereas the combined 
model was stronger for MAFLD than for MAFLD alone, 
with the best cutoff value of the combined predictive 
model being 0.334 (sensitivity = 0.761, specificity = 0.739). 
To further validate the predictive ability of the model, the 
entire 2017–2018 cycle dataset was used for the second-
ary validation of the model, and the results are shown in 
Table  6 and Fig.  2B. In the secondary validation of the 
model, the ability of the three to jointly predict MAFLD 
(AUC = 0.775) was similar to that of the AIP (AUC = 0.743) 
individually, but they were all stronger than the predictive 
ability of the AGTR and UHR individually for MAFLD. 
To further distinguish the predictive ability of the above 
models for MAFLD, we also analyzed age(18 ≤ age < 65 
and ≥ 65), BMI (< 25  kg/m2 and ≥ 25  kg/m2), sex(female 
and male), diabetic and race(Mexican American, Other 
Hispanic, Non-Hispanic White, Non-Hispanic Black and 
Other Race) populations in further subgroups, and the 
results (the internal validation and second validation’s roc 
curve for the subgroup) are shown in (Figs. 3, 4 and 5) and 
(Figs 6, 7 and 8). In the subgroups, the combined predic-
tion outperformed the three models independently, with 
the above model performing better for MAFLD prediction 
in female, nonoverweight and mexican american patients.

Comparison of the combined model and available models 
for predicting MAFLD
In order to complement and improve the new model, 
we compared the established model with the existing 
model (A-W-B) [14] and added waist circumference and 
or body mass index (BMI) to the new model as a supple-
ment. Delong Test was used to compare the models and 
the results of the analysis are shown in Table  6 and the 

AGTR  Albumin to glutamyl transpeptidase ratio, AIP Plasma atherogenicity index, 
UHR Serum uric acid to high-density lipoprotein cholesterol ratio
1 n (unweighted)(%); Median (IQR)
2 chi-squared test with Rao & Scott’s second-order correction; Wilcoxon rank-
sum test for complex survey samples; t-test adapted to complex survey samples

Table 3 (continued)

Characteristic Train Set,
N = 8858(69%)1

Validation1,
N = 3796(31%)1

p-value2

Mercury, total (umol/L) 7 (11) 7 (12) 0.8

Blood cadmium 
(nmol/L)

4.5 (5.4) 4.3 (5.3) 0.2

Table 4 Basic characteristics of participants according to train 
and second validation set

Characteristic Train Set,
N = 8858(40%)1

Validation2,
N = 2299(60%)1

p-value2

Sex 0.6

Male 4,354(49%) 1,143(50%)

FeMale 4,504(51%) 1,156(50%)

Age 46 (32, 60) 47 (32, 61) 0.8

BMI (kg/m2) 28 (24, 32) 28 (25, 33) 0.015

Ratio of income to pov-
erty

2.81 (1.37, 4.81) 3.19 (1.58, 5.00) 0.014

Race 0.5

Mexican American 1,441(8.9%) 323(9.3%)

Other Hispanic 1,014(6.0%) 216(6.7%)

Non-Hispanic White 3,704(67%) 798(64%)

Non-Hispanic Black 1,734(10%) 504(10%)

Other Race 965(7.6%) 458(10%)

AIP -0.05 (0.34) 0.01 (0.32)  < 0.001

MAFLD  < 0.001

NO 6,044(68%) 1,318(58%)

YES 2,814(32%) 981(42%)

AGTR 2.26 (1.48, 3.13) 2.11 (1.38, 3.00)  < 0.001

UHR 0.10 (0.07, 0.14) 0.10 (0.07, 0.14) 0.9

TC (mmol/l) 1.15 (0.79, 1.72) 1.32 (0.88, 1.94)  < 0.001

CRE(umol/L) 325 (83) 322 (86) 0.3

WC (cm) 99 (16) 101 (17) 0.045

Hypertension, n (%) 0.6

NO 5,798(68%) 1,453(69%)

YES 3,060(32%) 846(31%)

Overweight/Obesity 0.028

NO 2,738(31%) 626(27%)

YES 6,120(69%) 1,673(73%)

Activity  < 0.001

Light 2,222(21%) 545(19%)

Moderate 3,472(39%) 769(33%)

Vigorous 3,164(39%) 985(49%)

ALB(g/L)  < 0.001

Mean (SD) 42.8 (3.3) 41.1 (3.3)

Drinking  < 0.001

Never 2,314(21%) 665(21%)

Moderate 862(10%) 852(39%)

Excessive 5,682(69%) 782(40%)

ALP(U/L) 63 (52, 77) 73 (59, 89)  < 0.001

ALT(U/L) 21 (16, 29) 18 (13, 27)  < 0.001

Diabetes, n (%) 0.3

NO 7,821(91%) 1,981(90%)

YES 1,037(9.2%) 318(10%)

Smoking 0.14

NO 4,910(55%) 1,353(57%)

YES 3,948(45%) 946(43%)

Protein (gm) 83 (34) 82 (37) 0.5

Vitamin C (mg) 64 (30, 114) 59 (27, 105) 0.013
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parameter information of the model is shown in Table 7. 
We found that adding waist circumference and/or BMI 
to the joint prediction model improves the performance 
of the prediction, with excellent prediction performance 
in the internal test set, AUC > 0.90,and in the second-
ary validation set, AUC > 0.80. It is worth noting that the 

simultaneous inclusion of waist circumference and BMI in 
the model did not significantly improve the performance 
of the prediction model. Inclusion of waist circumfer-
ence and/or BMI in the model was superior to the A-W-B 
model in the total population as well as in the subgroup 
analyses.

Discussion
The results of this study showed that a greater AGTR was 
beneficial in reducing the risk of developing MAFLD, 
with an OR of 0.31, indicating that for each unit increase, 
the risk of developing MAFLD was reduced by 69%, 
which is indicative of a strong independent protective 
factor, However, the results are based on cross-sectional 

AGTR  Albumin to glutamyl transpeptidase ratio, AIP Plasma atherogenicity index, 
UHR Serum uric acid to high-density lipoprotein cholesterol ratio
1 n (unweighted)(%); Median (IQR)
2 chi-squared test with Rao & Scott’s second-order correction; Wilcoxon rank-
sum test for complex survey samples; t-test adapted to complex survey samples

Table 4 (continued)

Characteristic Train Set,
N = 8858(40%)1

Validation2,
N = 2299(60%)1

p-value2

Mercury, total (umol/L) 7 (11) 7 (11) 0.4

Blood cadmium 
(nmol/L)

4.5 (5.4) 3.9 (5.2) 0.010

Table 5 Analysis of the correlation between the study variables 
and MAFLD from NHANES 2007–2016

Model1 No variables were adjusted

Model2 Adjusted for age, gender, race, and income poverty ratio

Model3 Adjusted for BMI, physical activity, diabetes mellitus, alkaline 
phosphatase, mercury, cadmium, transaminases, smoking, drinking, protein 
intake, vitamin C and potential confounders of LDL on a previous basis based 
on model2

AGTR  albumin to glutamyl transpeptidase ratio, AIP plasma atherogenicity index
1 OR Odds Ratio, CI Confidence Interval

Characteristic OR1 95%  CI1 p-value

Model1
AGTR 0.31 0.29, 0.33  < 0.001

AIP

 Q1(≤ -0.2824) — —

 Q2(-0.2824, -0.0687) 2.66 2.17, 3.26  < 0.001

 Q3(-0.0687,0.1634) 6.16 5.08, 7.46  < 0.001

 Q4(> 0.1634) 16.7 13.3, 21.0  < 0.001

Model2
AGTR 0.30 0.28, 0.32  < 0.001

AIP

 Q1(≤ -0.2824) — —

 Q2(-0.2824, -0.0687) 2.56 2.11, 3.12  < 0.001

 Q3(-0.0687,0.1634) 5.88 4.86, 7.11  < 0.001

 Q4(> 0.1634) 16.3 13.0, 20.5  < 0.001

Model3
AGTR 0.30 0.27, 0.33  < 0.001

AIP

 Q1(≤ -0.2824) — —

 Q2(-0.2824, -0.0687) 1.81 1.35, 2.44  < 0.001

 Q3(-0.0687,0.1634) 3.32 2.61, 4.21  < 0.001

 Q4(> 0.1634) 7.27 5.47, 9.65  < 0.001

Table 6 The AUC data from train set, internal validation set and 
second validation set

AWB AIP + Waist + BMI, AAU  AGTR + AIP + UHR, 
BAAU BMI + AGTR + AIP + log(UHR), WAAU  Waist + AGTR + AIP + log(UHR), 
BWAAU  BMI + Waist + AGTR + AIP + log(UHR), AGTR  albumin to glutamyl 
transpeptidase ratio, AIP plasma atherogenicity index, UHR serum uric acid to 
high-density lipoprotein cholesterol ratio
* The logarithm is based on “e”
1 Delong test

AUC Sensitivity Specificity Cutoff p-value1

Train Set

 AAU 0.844 0.814 0.727 0.308 ref

 AGTR 0.782 0.767 0.648 0.312  < 0.001

 AIP 0.759 0.702 0.686 0.305  < 0.001

 UHR 0.750 0.716 0.660 0.306  < 0.001

 AWB 0.902 0.837 0.803 0.286  < 0.001

 BAAU 0.915 0.882 0.786 0.271  < 0.001

 WAAU 0.930 0.878 0.824 0.288  < 0.001

 BWAAU 0.930 0.875 0.826 0.293  < 0.001

Internal validation

 AAU 0.824 0.761 0.739 0.334 ref

 AGTR 0.773 0.680 0.721 0.368  < 0.001

 AIP 0.749 0.687 0.707 0.317  < 0.001

 UHR 0.728 0.684 0.651 0.309  < 0.001

 AWB 0.894 0.841 0.772 0.268  < 0.001

 BAAU 0.903 0.862 0.777 0.296  < 0.001

 WAAU 0.920 0.843 0.840 0.359  < 0.001

 BWAAU 0.920 0.852 0.831 0.343  < 0.001

Second validation

 AAU 0.775 0.761 0.656 0.301 ref

 AGTR 0.697 0.792 0.507 0.263  < 0.001

 AIP 0.743 0.733 0.643 0.301  < 0.001

 UHR 0.722 0.704 0.638 0.287  < 0.001

 AWB 0.831 0.792 0.726 0.247  < 0.001

 BAAU 0.830 0.778 0.737 0.303  < 0.001

 WAAU 0.837 0.812 0.710 0.222  < 0.001

 BWAAU 0.837 0.804 0.717 0.236  < 0.001
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studies, and multifactorial logistic regression analyses 
may be biased for non-rare diseases in cross-sectional 
studies [34]. Albumin is a biologically active substance 
synthesized by the liver and a marker of liver function 
with many biological functions. It is the most abundant 
plasma protein in human blood, transporting metals, 
fatty acids, cholesterol, bile pigments, and drugs, and it 
is also the main antioxidant in body fluids, playing an 
important anti-inflammatory role in inflammatory oxida-
tive stress [35]. In the present study, albumin levels were 
lower in the MAFLD population than in the non-MAFLD 
population, which may be associated with the involve-
ment of inflammation in the development of MAFLD, 
and lipid accumulation in the liver promotes the progres-
sion of hepatic inflammation [4], making the albumin 
level low in the MAFLD population. Albumin binds to 
free fatty acids and reduces the levels of free fatty acids, 
which are one of the important triggers of insulin resist-
ance, and increased levels of free fatty acids can lead to 
deterioration of insulin sensitivity, while induction of tis-
sue oxidative stress can lead to tissue insulin resistance 
[36]. Glutamyl transpeptidase (GGT) has good sensitivity 
for the diagnosis of NAFLD and is one of the indicators 
that make up the Fatty Liver Index (FLI), which is able to 
participate in the metabolic process of the glutathione 
antioxidant system; thus, GGT can be elevated in inflam-
matory states. It has been shown that GGT also increases 

the risk of insulin resistance, which is considered an 
important developmental factor in MAFLD [37]. Albu-
min has a negative correlation on GGT’s. On the one 
hand, when albumin level decreases, free fatty acids are 
elevated, which will stimulate the synthesis and release 
of GGT [38]. On the other hand, the anti-inflammatory 
effect of albumin, which will inhibit the occurrence of 
oxidative stress, plays a protective role in the liver, thus 
reducing the risk of MAFLD. In addition, GGT is also an 
important indicator reflecting intrahepatic cholestasis, 
and the state of intrahepatic microcholestasis is involved 
in the development of MAFLD, so an elevated level of 
GGT or a decreased level of albumin will increase the risk 
of the development of MAFLD. We hypothesized that the 
AGTR would have predictive value for MAFLD. Our con-
jecture was revealed in both internal and secondary vali-
dation, showing that the AGTR was significantly better 
than the UHR in predicting MAFLD in the diabetic pop-
ulation, which indicated that it may be a potential inflam-
matory marker after the UHR and a more accessible and 
accurate predictive indicator for MAFLD patients. How-
ever, while previous studies have shown that 1/AGTR can 
be used as an independent predictor of coronary artery 
disease [39, 40], there are still few studies on the AGTR, 
and its predictive value in MAFLD or NAFLD has not yet 
been explored. Our study is the first to use the AGTR as 
a predictor of MAFLD and has emphasized the role of 

Fig. 2 A: The roc curve for internal validation; B: The roc curve for the second validation
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albumin in MAFLD, whose mechanism of action may be 
related to oxidative and antioxidant imbalance, but how 
albumin and GGT work together in MAFLD has not yet 
been clarified and needs to be further explored.

UHR is a relatively recent and novel marker of inflam-
mation, consisting of uric acid as well as HDL, and it 
has been shown that high levels are associated with 
high abdominal visceral fat (VFA), which is associated 
with central obesity, a risk factor for the development 
of MAFLD [8, 41]. In addition, UHR may increase the 

burden of inflammation and oxidative stress, which indi-
rectly affects the insulin sensitivity of patients, leading 
to the development of MAFLD. In the present study, the 
predictive value of UHR for MAFLD was explored, and 
multiple subgroup analyses showed that the female popu-
lation had better predictive performance, which may be 
related to differences in hormone levels between genders. 
The results are consistent with previous studies [31].

AIP is a marker that responds to lipid metabolism, 
which is strongly associated with metabolic syndrome 

Fig. 3 The internal validation roc curve of the subgroup



Page 10 of 17Li et al. BMC Gastroenterology          (2024) 24:109 

and the occurrence of adverse cardiovascular events; 
therefore, in this study, we evaluated the relationship 
between the AIP and MAFLD and demonstrated that 
the AIP was significantly and positively associated with 
the risk of developing MAFLD and could be used as a 
predictor of MAFLD. In the total population, our find-
ings are compatible with a previous meta-analysis [12] 
showing the beneficial role of the AIP in predicting 
MAFLD or NAFLD with internal validation and sec-
ondary validation showing an AUC > 0.7. In subgroup 

analyses, the AIP predicted MAFLD better in non-
diabetic than in diabetic populations. AIP not only 
increases the risk of insulin resistance [42], but also 
leads to disturbances in lipid metabolism. A retro-
spective study based on a Chinese diabetic population 
showed that the AIP has a predictive value in the dia-
betic population [13]. However, this study only evalu-
ated the diabetic population and obtained a value of 
0.57 for the resultant AUC, which is not a very good 
predictive performance. Our study is consistent with 

Fig. 4  The internal validation roc curve of the subgroup
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Fig. 5  The internal validation roc curve of the subgroup
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the findings of Duan, Shao-Jie et al. [14]. However, we 
added subgroup analyses of diabetic populations, eth-
nic populations, which allowed the predictive value of 
AIP to be validated in a wider population.

To further improve the prediction performance of the 
prediction model for MAFLD, we combined the AGTR, 
AIP, and UHR to jointly predict MAFLD, and through 
the complementary prediction performance of the 
three, the results showed that in the total population as 
well as subgroup analysis, the prediction of MAFLD by 

the combination of the three was stronger than that of 
the individual predictive ability, and our findings also 
showed that in the female population, the joint predic-
tive ability of the three for MAFLD was the best among 
the subgroups. In the female population, the preva-
lence of NAFLD and MAFLD was lower than that in 
the male population, and estradiol had an antioxidant 
effect, whereas in the nonmenopausal female popula-
tion, estradiol levels were higher than those in the male 
population, which may be attributed to the protective 

Fig. 6 The second validation’s roc curve for the subgroup
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effect of estradiol [43]. Furthermore, estradiol reduces 
serum concentrations of GGT, uric acid and triglycerides 
and indirectly reduces diet-induced fatty liver injury via 
peroxidase [44–46]. These factors may explain why the 
AGTR, AIP, and UHR are better predictors in the female 
population.

Finally, we also compared the strengths and weaknesses 
of our model with the A-W-B model, and our study 
showed that our model supplemented with waist cir-
cumference and or BMI parameters was clearly superior 

to the A-W-B model in the total population as well as in 
each subgroup. Therefore, when using our model in the 
clinical setting, the addition of waist circumference or 
BMI can be a better predictor of MAFLD. Our study also 
showed that waist circumference is a better predictor 
of MAFLD than BMI, which may be that waist circum-
ference is more reflective of central obesity [47], which 
is an important risk factor for MAFLD. Therefore, we 
recommend prioritizing the use of waist circumference 
over BMI when screening people for MAFLD [48]. The 

Fig. 7  The second validation’s roc curve for the subgroup
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Fig. 8  The second validation’s roc curve for the subgroup
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predictive model based on weighted analysis in this study 
has metrics that are easy to obtain, less costly than CT, 
MRI, and other imaging, easy to compute, and conducive 
to replication in physical exams or hospitalizations in the 
U.S. population.

Several advantages of this study are worth mention-
ing. To our knowledge, this is the first study to use the 
AGTR as a predictor of MAFLD. In addition, this is also 
the first study to assess the predictive efficacy of the 
AIP for MAFLD in the NHANES dataset. However, we 
acknowledge that there are also some limitations in this 
study, of which three main limitations were observed. 
First, this study is a cross-sectional study, which pre-
vents us from drawing conclusions about causality. The 
longitudinal design will make the results more reliable. 
Second, the modalities we used to diagnose fatty liver 
were USFLI and transient elastography, and although 
their accuracy has been widely validated. We may 
underestimate the prevalence of MAFLD. Therefore, 

the gold standard is still liver puncture biopsy. Finally, 
some of the data used in the diagnosis of MAFLD were 
derived from a questionnaire, and the results may be 
somewhat biased. We may underestimate the impact of 
factors such as diet, exercise, and alcohol consumption 
on predictive markers. More prospective cohort studies 
are still needed to fully validate our findings.

Conclusion
In conclusion, our study showed that the AGTR, AIP, 
and UHR have strong MAFLD predictive value and their 
combination can increase the predictive performance, 
especially in the female population. This study is impor-
tant for developing personalized MAFLD diagnostic and 
treatment methods.
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