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Abstract

Background: 3,3'-Diindolylmethane (DIM), an indole derivative produced in the stomach after the
consumption of broccoli and other cruciferous vegetables, has been demonstrated to exert anti-
cancer effects in both in vivo and in vitro models. We have previously determined that DIM (0 — 30
pmol/L) inhibited the growth of HT-29 human colon cancer cells in a concentration-dependent
fashion. In this study, we evaluated the effects of DIM on cell cycle progression in HT-29 cells.

Methods: HT-29 cells were cultured with various concentrations of DIM (0 — 30 umol/L) and the
DNA was stained with propidium iodide, followed by flow cytometric analysis. [3H]Thymidine
incorporation assays, Western blot analyses, immunoprecipitation and in vitro kinase assays for
cyclin-dependent kinase (CDK) and cell division cycle (CDC)2 were conducted.

Results: The percentages of cells in the G| and G2/M phases were dose-dependently increased
and the percentages of cells in S phase were reduced within 12 h in DIM-treated cells. DIM also
reduced DNA synthesis in a dose-dependent fashion. DIM markedly reduced CDK2 activity and
the levels of phosphorylated retinoblastoma proteins (Rb) and E2F-1, and also increased the levels
of hypophosphorylated Rb. DIM reduced the protein levels of cyclin A, DI, and CDK4. DIM also
increased the protein levels of CDK inhibitors, p2| CIPIUWAFI and p27KIPI, |n addition, DIM reduced
the activity of CDC2 and the levels of CDC25C phosphatase and cyclin BI.

Conclusion: Here, we have demonstrated that DIM induces G| and G2/M phase cell cycle arrest
in HT-29 cells, and this effect may be mediated by reduced CDK activity.

Background

Epidemiologic data continue to support the hypothesis
that the intake of Brassica plants, including turnips, kale,
broccoli, cabbage, Brussels sprouts, and cauliflower, may
exert protective effects against various types of cancers [1-
4]. Dietary glucosinolates present in Brassica species have
been previously shown to protect against several types of
cancer [5,6]. Indole-3-carbinol (I3C) is the principal

hydrolysis product of the glucosinolate glucobrassicin [ 7],
and has been shown to offer significant protection against
cancer in animal models induced by a variety of chemical
carcinogens [8-10], as well as in cultured human cancer
cells [11-13]. Initial clinical trials in women have shown
that I3C may prove to be a promising agent against cervi-
cal and breast cancers (reviewed in [14]).

Page 1 of 11

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19480695
http://www.biomedcentral.com/1471-230X/9/39
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Gastroenterology 2009, 9:39

13C is chemically unstable in the low pH environment of
the stomach, and has been demonstrated to undergo self-
condensation reactions, resulting in the production of a
variety of polymeric products. Among them, 3,3'-diin-
dolylmethane (DIM) is a principal product, which is acid-
stable [15,16] and is measurable in both human urine
samples [17] and animal tissues [18]. It has been shown
that DIM reduces carcinogenesis in a variety of animal
cancer models, including the tumor growth of injected
TRAMP-C2, a mouse prostate cell line, in C57BL/6 mice
[19], 7,12-dimethylbenz [a]anthracene (DMBA)-induced
mammary tumors in rats [20], benzo [a]pyrene-induced
stomach cancers in mice, and the growth of transplantable
human breast carcinoma and angiogenesis in mice [21].
In addition, results generated with in vitro cell culture
studies have shown that DIM inhibits the proliferation of
a variety of cancer cell types, including prostate (Reviewed
in [22]) and breast [23,24] cancer cells, via the induction
of cell cycle arrest and apoptosis.

Carcinogenesis is a multistep process, and there are sev-
eral opportunities for intervention to halt, regress, or
delay the carcinogenic process. One of these anti-carcino-
genic actions involves the inhibition of cell cycle progres-
sion, because insensitivity to growth-inhibitory
(antigrowth) signals is one of the hallmarks of cancer
[25]. Therefore, searching for bioactive food components
with the ability to inhibit cancer cell cycle progression
should facilitate the identification of new compounds
that can potentially inhibit cancer progression.

Cell cycle progression depends on the activation of cyclin-
dependent kinases (CDK), which act consecutively in G1
to initiate S phase and in G2 to initiate mitosis. Upon
mitogenic stimuli, D-type cyclins are induced and bind to
and activate CDK4 and CDK6. The cyclin D-dependent
kinases initiate the phosphorylation of retinoblastoma
proteins (Rb), relieving E2F from negative restraints and
allowing for the expression of certain E2F-target genes.
Cyclin E-CDK2 completes Rb phosphorylation, further
permitting the activation of E2F-responsive genes. CDK2
is also capable of binding to A-type cyclins during the S
phase, whereas the control of G2 and M phases depends
principally upon the cyclin A-cell division cycle (CDC)2
and cyclin B-CDC2 (reviewed in [26,27]). Several mam-
malian CDK inhibitors (CDKIs) have been previously
identified. One group is the INK4 (inhibitors of CDK4)
family, which has four members-p16!NKda, p]5INKdb,
p18INKdc gnd p19INK4d_3]] of which share the ability to
control the G1/S transition [28,29]. The second group of
CDKIs includes p21C€IP1/WAFL gnd p27KIPl These proteins
conduct pivotal functions in cell cycle regulation via the
coordination of internal and external signals that inhibit
cell cycle progression at critical checkpoints [29].
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There have been only a few studies conducted thus far that
have assessed the effects of DIM on the prevention of
colon cancer. DIM has been shown to effect a dose-
dependent cytotoxicity in HT-29 human colon adenocar-
cinoma cells [30]. We have previously demonstrated that
DIM inhibits the growth of HT-29 and HCT-116 human
colon cancer cells and induced apoptosis in these cells
[31]. To the best of our knowledge, the molecular mecha-
nisms by which DIM inhibits the cell cycle progression of
colon cancer cells have yet to be clearly elucidated. The
results of this study show that DIM delays cell cycle pro-
gression at the G1 and G2/M phases and inhibits the activ-
ity of CDK2 and CDC2 in HT-29 cells.

Methods

Materials

The following reagents and chemicals were obtained from
the indicated suppliers: DIM (LKT Laboratories, St. Paul,
MN); anti-B-actin and p16INK/CDKN2 (Sjgma, St. Louis,
MO); antibodies against CDC25C, cyclin B1, and phos-
pho-Rb (Cell Signaling, Danvers, MA); horseradish perox-
idase (HRP)-conjugated anti-rabbit and anti-mouse IgG
and protein A-Sepharose (GE Healthcare Biosciences, Pis-
cataway, NJ); [y-32P]JATP (Perkin Elmer Life Science,
Waltham, MA); anti-cyclin D1 antibody (Neomarkers,
Fremont, CA); and antibodies against p21CIP1/WAFL
p27XIPL cyclin A, cyclin E, CDK2, CDK4, CDC2, E2F-1,
and Rb (Santa Cruz Biotechnology, Santa Cruz, CA).

Cell culture

The HT-29 cell line was obtained from the American Type
Culture Collection (ATCC, Manassas, VA) and main-
tained in DMEM/F-12 supplemented with 10% FBS,
100,000 U/L of penicillin, and 100 mg/L of streptomycin.
In order to determine the effects of DIM, we plated the
cells with DMEM/F12 containing 10% FBS. Prior to DIM
treatment, the cell monolayers were rinsed and serum-
deprived for 24 h with DMEM/F-12 containing 1% FBS.
After serum deprivation, we replaced the medium with
fresh serum deprivation medium with or without 30
pmol/L of DIM.

To evaluate [3H]thymidine incorporation, HT-29 cells
were plated in 96-well plates at a density of 6,000 cells/
well, serum-deprived, and treated with various concentra-
tions of DIM for 9 h, as described above. 0.5 uCi [3H]thy-
midine was then added to each well, and the incubation
continued for an additional 3 h at 37°C. The incorpora-
tion of [3H]thymidine into the DNA of HT-29 cells was
determined as previously described [32].

Cell cycle analysis by flow cytometry
Cells were plated in 100 mm dishes at 2,000,000 cells/
dish in DMEM/F-12 containing 10% FBS. The cells were
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serum-deprived and treated for 12 h with various concen-
trations of DIM, then trypsinized. The nuclei were stained
with propidium iodide as described previously [33] and
subjected to fluorescence-activated cell sorting analysis
utilizing the FACScan system (Becton Dickinson, Franklin
Lakes, NJ). The data were analyzed using ModFit V.1.2.
software.

Immunoprecipitation and immunoblot analyses

The cells were lysed as previously described [34] and the
protein concentrations of lysates were determined using a
bicinchoninic acid protein assay kit (Thermo Fisher Scien-
tific, Rockford, IL). For immunoprecipitation, cell lysates
(750 pg protein) were precleared with 1.5 pg of normal
rabbit IgG and 100 pL of protein A-Sepharose bead slurry
on a rotating platform for 1 h, then centrifuged for 10 min
at 12,000 rpm at 4°C. The supernatants were incubated
for 1 h with 1 pg of anti-CDK2 or anti-CDC2 antibody at
4°C. The protein A-Sepharose was added and incubated
for an additional 1 h at 4°. The beads were then washed
four times in lysis buffer via 5 min of centrifugation at
2,500 rpm at 4°C. Total cell lysates (50 pg protein) or
immunoprecipitated proteins were resolved on SDS-
PAGE (4 - 20% or 10 - 20%) and transferred onto a pol-
yvinylidene fluoride membrane (Millipore, Billerica,
MA). The blots were incubated for 1 h with anti-CDK2
(1:1000), anti-CDK4 (1:1000), anti-cyclin A (1:1000),
anti-cyclin D1 (1:200), anti-cyclin E (1:1000), anti-
p21CIPI/WAFL (1:1000), anti-p27KIP1(1:1000), anti-phos-
pho-Rb (1:1000), anti-Rb (1:1000), anti-E2F-1 (1:1000),
or anti-B-actin (1:2000) antibody. The membranes were
then incubated with anti-mouse or anti-rabbit HRP-con-
jugated antibody. The signal was detected with a chemilu-
minescence detection system (Millipore). Densitometric
analysis was conducted using the Bio-profile Bio-ID appli-
cation (Vilber-Lourmat, Marne-la-Vallée, France). Expres-
sion levels were normalized to B-actin and the control (0
pmol/L DIM at 2 h) levels were set at 100%.

Reverse transcription polymerase chain reaction (RT-PCR)
Total RNA was isolated using Tri reagent (Sigma), and
cDNA was synthesized using 2 pg of total RNA with Super-
Script™ Il reverse transcriptase (Invitrogen, Carlsbad, CA),
as described previously [35]. For cDNA amplification,
primers for human p21€IP1/WAF1 (upstream primer; 5'-AAR
AAG GAA GCG ACC TGC AA-3'; downstream primer, 5'-
CCA ACG CIT TTA GAG GCA GA-3', annealing at 55°C
for 1 min with 38 cycles), p27KIP1 (upstream primer; 5'-
AAT AAG GAA GCG ACCTGC AA-3'; downstream primer,
5'-CAA ACG CITTTA GAG GCA GA-3', annealing at 60°C
for 1 min with 27 cycles), and p16!NK/CDKN2 (upstream
primer; 5'-GCC CAA CGC ACC GAA TAG-3'; downstream
primer, 5'-ACG GGT CGG GTG AGA GTG-3', annealing at
54°C for 1 min with 37 cycles) were used. The expressions
of human B-actin transcripts were assessed as an internal
control, as described previously [34]. For each combina-
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tion of primers, the kinetics of the PCR amplification were
studied, the number of cycles corresponding to the pla-
teau was determined, and the PCR was conducted within
the exponential range. The PCR products were then sepa-
rated in 1 or 2% agarose gel and stained with ethidium
bromide. Bands corresponding to each specific PCR prod-
uct were quantified via the densitometric scanning of the
exposed film using the Bio-profile Bio-ID application.

In vitro kinase assay

Cell lysates (750 pg protein) were immunoprecipitated
with polyclonal antibody against CDK2 or CDC2 as
described above. After capture with protein A-Sepharose
and subsequent washes, the beads were incubated for 30
min at 37°C in 15 pL of kinase buffer [36] containing 2
pg of histone H1 (Roche, Nutley, NJ) and 3 pCi of [y-
32P]ATP (CDK2 kinase assay) or in 30 pL of kinase buffer
containing 2 pg of histone H1 and 5 pCi of [y-32P]ATP
(CDC2 kinase assay). The reaction was halted by boiling
the samples for 5 min in SDS sample buffer. The 32P-
labeled histone H1 was resolved on SDS-PAGE, and the
gels were dried and subjected to autoradiography. Signals
were quantified via densitometric scanning of the exposed
film.

Statistical analysis

The results were expressed as the means + SEM for the
indicated number of separate experiments. Statistical data
analysis was conducted with ANOVA. Differences
between the treatment groups were analyzed via Duncan's
multiple range test or Student's t-test. Differences were
considered significant at P < 0.05. Statistical analyses were
conducted using the SAS system for Windows, version
8.12.

Results

DIM induces cell cycle arrest at the GI and G2/M phases
and inhibits DNA synthesis in HT-29 cells

We have previously shown that DIM reduces the numbers
of viable HT-29 cells in a dose-dependent manner (10 —
30 umol/L) [31]. We have also reported that these concen-
trations of DIM do not affect the viability of IEC-6 cells,
which are normal small intestinal epithelial cells [31]. To
determine whether DIM regulates cell cycle progression in
HT-29 cells, the cells were treated for 12 h with 10 - 30
pmol/L of DIM, and the DNA was stained with propidium
iodide, followed by FACS analysis. The treatment of cells
with various concentrations of DIM for 12 h resulted in
dose-dependent increases in the percentage of cells in G1
and G2/M phases with a concomitant reduction in cell
numbers in the S phase (Fig. 1A). However, the differ-
ences between 0 and 10 pmol/L of DIM in G1 and S phase
were not statistically significant. Consistent with the
occurrence of cell cycle G1 arrest at 12 h, DIM reduced the
[3H]thymidine incorporation into the DNA of HT-29 cells
in a dose-dependent manner (Fig. 1B).
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Figure |

DIM induces cell cycle arrest at G| or G2/M phases and inhibits [3H]thymidine incorporation in HT-29 cells. (A)
Cells were plated in 6-well plates at 200,000 cells/well with DMEM/F12 supplemented with 10% FBS. 24 h after plating, the
monolayers were serum-deprived for 24 h with DMEM/F-12 containing 1% FBS. After serum deprivation, cells were incubated
for 12 h in serum deprivation medium containing 10, 20 or 30 umol/L DIM. The nuclei were stained with propidium iodide and
the cell cycle was analyzed via flow cytometry. (B) Cells were plated at a density of 6,000 cells/well in 96-well plates and serum-
deprived, then incubated for 9 h in serum deprivation medium containing 0, 10, 20 or 30 umol/L DIM. [3H]Thymidine was
added, and the cells were incubated for an additional 3 h to measure the incorporation into DNA. Each bar represents the
mean £ SEM (n = 6). Comparisons between groups that yielded significant differences (P < 0.05) are indicated by different let-

ters above each bar.
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DIM reduces the levels of CDK4, cyclin A, and cyclin D1
proteins

We first examined the effects of DIM on proteins control-
ling the G1/S phase transition. DIM did not affect the lev-
els of the CDK2 protein, whereas the levels of CDK4 were
reduced in HT-29 cells within 2 h after treatment with 30
pmol/L DIM. The levels of cyclin A and cyclin D1 were
reduced within 6 h and 2 h, respectively, after treatment
with 30 umol/L of DIM, whereas the levels of cyclin E
were not altered by DIM treatment (Fig. 2).

DIM increases the levels of p21 and p27 proteins and
mRNAs

Because the CDK inhibitors p21CIP1/WAF1 gnd p27KIP1 gre
known to inhibit CDK activity, we subsequently exam-

http://www.biomedcentral.com/1471-230X/9/39

ined the effects of DIM on the levels of p21CIP1/WAF1 gnd
p27XIP1 proteins. The levels of p21CIP1/WAF1 gnd p27KIP1
proteins were markedly increased in HT-29 cells at 6 h
after treatment with 30 pmol/L of DIM (Fig. 3A). In order
to determine whether DIM regulates the levels of p21¢IPY/
WAF1gnd p27KIP1 at the RNA level, we conducted RT-PCR
analyses. The mRNA levels of p21CIP1/WAF1 gnd p27KIP1
increased within 2 h after treatment with 30 pumol/L of
DIM, which were consistently higher during the 12 h of
DIM treatment (Fig. 3B). We also examined the effects of
DIM on the levels of pl16INK/CDKN2 (3]so known as
p16!NK4a) protein and mRNA. The levels of p16!NK/CDKN2
protein and mRNA were not affected by DIM treatment
(Fig. 3A and 3B).
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Figure 2

DIM reduces the levels of CDK4 and of cyclin A and E in HT-29 cells. Cells were treated with DIM as described in Fig-
ure I A. Cell lysates were analyzed via Western blotting with the indicated antibodies. Photographs of the chemiluminescent
detection of the blots, which were representative of three independent experiments, are shown. The relative abundance of
each band to its own B-actin was quantified, and the control levels were set at 100%. The adjusted mean + SEM (n = 3) of each
band is shown above each blot. *Significantly different from 0 pmol/L DIM, P <0.05.
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Figure 3

DIM increases the levels of p21 and p27 proteins and mRNAs in HT-29 cells. Cells were treated with different con-
centrations of DIM as described in Figure I. (A) Cell lysates were analyzed by Western blotting with the indicated antibodies.
Photographs of the chemiluminescent detection of the blots, which were representative of three independent experiments, are
shown. (B) Total RNA was isolated and reverse-transcribed, and PCR was performed with the specific primers for pl16, p21,
p27, or B-actin. PCR products were separated in an agarose gel with TAE buffer and stained with ethidium bromide. Photo-
graphs of the ethidium bromide-stained gels, which are representative of three independent experiments, are shown. The rela-
tive abundance of each band to its own [-actin was quantified, and the control levels were set at 100%. The adjusted mean +
SEM (n = 3) of each band is shown above each blot. *Significantly different from 0 umol/L DIM, P < 0.05.
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DIM inhibits the activity of CDK2 and the levels of
phospho-Rb and increases those of hypophosphorylated
Rb

In order to determine whether the reduced cyclin A and
increased p21CIPY/WAF1 gnd p27KIP1 protein expressions
induced by DIM treatment resulted in the inhibition of
CDK2 activity, total cell lysates were immunoprecipitated
with the CDK2 antibody followed by in vitro kinase assays,
using histone H1 as the substrate. A reduction in CDK2
activity was detected within 2 h after treatment with 30
pmol/L of DIM, with a significant difference becoming
apparent during 12 h of DIM treatment (Fig. 4A).

Members of the Rb protein family are phosphorylated by
CDKs, resulting in the activation of gene expression
required for cell cycle progression. Because DIM inhibited
CDK2 activity, we subsequently attempted to determine
whether the reduction in CDK activity induced by DIM
treatment led to reduced phosphorylation of the Rb pro-
tein. Western blot analysis of total cell lysates with phos-
pho-Rb antibody revealed that phospho-Rb levels were
reduced in the DIM-treated cells. When the immunoblot
was probed using total Rb antibody, two bands were
detected with an increase in the intensity of the lower
band (hypophosphorylated Rb) being detected in the
DIM-treated HT-29 cells, whereas the intensity of the
higher band (hyperphosphorylated Rb) was reduced by
DIM treatment. The levels of the E2F-1 protein were sig-
nificantly lower in the cells treated with DIM for 12 h (Fig.
4B).

DIM inhibits CDC2 activity

To elucidate the mechanisms by which DIM induces G2/
M arrest, the levels of G2/M regulatory proteins were
assessed. The protein levels of cyclin B1 and CDC25C
were reduced in cells treated with 30 umol/L of DIM at 6
h and 2 h, respectively. DIM had no effect on the levels of
the CDC2 protein (Fig. 5A). In vitro kinase assays were
conducted to assess CDC2 activity after pulling down the
CDC2 immune complex with CDC2 antibody. CDC2
kinase activity was reduced significantly at 6 h after the
addition of DIM (Fig. 5B).

Discussion

Preliminary clinical trials in women suggest that the I3C
found in cabbage, broccoli, Brussels sprouts, and cauli-
flower is a promising agent against breast and cervical can-
cer (reviewed in [14]). I3C has been observed to reduce
the development of cancer in animals when administered
prior to or simultaneously with a carcinogen, whereas it
enhanced the development of cancer when administered
after carcinogen treatment (Reviewed in [5]). For exam-
ple, Plate et al. reported that I3C reduced azoxymethane
(AOM)-induced aberrant crypt foci formation in rats [37],
whereas Suzui et al. observed that I3C increased the tumor
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multiplicity of adenocarcinomas in the colon of AOM-
treated rats [38]. Because it is believed that DIM mediates
the anticarcinogenic effects of 13C, it is important to
understand the mechanisms by which DIM exerts its anti-
carcinogenic effects.

In our previous study, we demonstrated that DIM inhibits
cell growth and induces apoptosis in HT-29 and HCT-116
human colon cancer cells in a concentration-dependent
manner (10-30 pmol/L). However, unpublished results
in our laboratories showed that I3C at the same concen-
trations did not alter the viable cell numbers of either HT-
29 human colon cancer or DU145 human prostate cancer
cells (Kim EJ and Park JHY, unpublished results). In the
present study, using HT-29 cells, we have shown that 1)
DIM induces G1 and G2/M arrest; 2) DIM reduces the
protein levels of cyclin A, D1, and CDK4. 3) DIM
increased the protein levels of the CDK inhibitors,
p21CIPI/WAFL apnd p27KIP1; 4) DIM reduced the phosphor-
ylation of Rb and the levels of E2F-1, as well as CDK2
activity; 5) DIM reduced the levels of CDC25C phos-
phatase and cyclin B1, as well as CDC2 activity. Hanahan
and Weinberg [25] described six necessary changes in cell
physiology that dictate malignant growth, two of which
are the self-sufficiency of growth signals and the evasion
of programmed cell death or apoptosis. Therefore, a bio-
active compound such as DIM, which has the ability to
induce apoptosis and inhibit cell cycle progression in
colon cancer cells, may potentially be utilized as a chem-
opreventive agent for colon cancer. More studies with ani-
mal models and humans will be necessary to further
determine whether DIM might potentially prove useful as
an agent to prevent the development of colon cancer.

There is currently a dearth of data regarding the pharma-
cokinetics of DIM and its tissue distribution in humans
[39]. Therefore, it is difficult to extrapolate the findings of
the present study to humans. In this study, we utilized
DIM at a concentration of 10 - 30 pmol/L, and Hong et al.
[24] previously assessed the effects of 10 - 100 pmol/L
DIM on cell cycle progression in breast cancer cells. We
demonstrated, in a previous study, that DIM at concentra-
tions of 10 - 30 pmol/L had no effect on the growth of
IEC-6 cells, a normal intestinal epithelial cell line derived
from the rat jejunum [31]. DIM was detected in the
plasma (0.8 pg/mL or 3.24 pmol/L) and liver tissue (4 ng/
mL or 16.3 pmol/L) of CD-1 female mice 2 h after the oral
administration of 250 mg/kg of I3C [40]. In a phase I trial
of I3C, DIM was reported to be the only detectable com-
pound and reached a level of 607 ng/mL (2.46 umol/L)
after the administration of a single dose of 1000 mg [41].
Therefore, it is possible that the concentrations of DIM in
the plasma and tissues of mice can be increased to the lev-
els employed in our current study. It is also possible that
low gut uptake of DIM may produce elevated DIM con-
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Figure 4

DIM inhibits CDK2 activity and reduces the levels of phospho-Rb and E2F-1 in HT-29 cells. Cells were treated
with different concentrations of DIM as described in Figure |. (A) CDK2 was immunoprecipitated and analyzed via an in vitro
kinase assay using histone H| as a substrate. An autoradiograph of the dried gel, which is representative of three independent
experiments, is shown. (B) Cell lysates were analyzed via Western blotting. Photographs of the chemiluminescent detection of
the blots, which were representative of three independent experiments, are shown. The relative abundance of each band to its
own CDK2 (A) or B-actin (B) was quantified, and the control levels were set at 100%. The adjusted mean + SEM (n = 3) of
each band is shown above each blot. *Significantly different from 0 pmol/L DIM, P < 0.05.

centrations in the lumen of the colon, which can be made
available to the colonocytes. It remains to be determined
whether the concentrations of DIM utilized in the present
study are clinically pertinent, by determining the concen-
trations of DIM in human plasma or the colonic lumen
after the chronic administration of 13C and/or DIM.

The mammalian cell cycle is regulated by CDKs. CDK4
and 6 initiate the phosphorylation of Rb, which is aug-
mented by the activity of CDK2 complexes with cyclins A
and E. The Rb family proteins bind to members of the E2F
transcription factor family and block the E2F-dependent
transcription of genes controlling the G1 to S phase tran-
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Figure 5

DIM reduces the protein levels of cyclin Bl and CDC25C and the activity of CDC2 in HT-29 cells. Cells were
treated with different concentrations of DIM as described in Figure |. (A) Cell lysates were analyzed via Western blotting with
the indicated antibodies. Photographs of the chemiluminescent detection of the blots, which were representative of three inde-
pendent experiments, are shown. (B) CDC2 was immunoprecipitated and analyzed by an in vitro kinase assay, using histone H|

as a substrate. Photographs of an autoradiograph of the dried gel,

which are representative of three independent experiments,

are provided. The relative abundance of each band to its own B-actin (A) or CDC2 (B) was quantified, and the control levels
were set at 100%. The adjusted mean + SEM (n = 3) of each band is shown above each blot. *Significantly different from 0

pmol/L DIM, P < 0.05.

sition and subsequent DNA synthesis [42]. The phospho-
rylation of Rb disrupts its association with E2F, thereby
reducing the suppression of E2F target genes (reviewed in
[43]). In the current study, DIM drastically reduced the
levels of CDK4 and cyclin D1 and increased the levels of
p21CI/CIP1 and p27KIP1 proteins, thus suggesting that

CDK4 activity may have been reduced in the DIM-treated
cells. We also noted that DIM inhibited CDK2 activity and
Rb phosphorylation. In addition to the observed reduc-
tion in Rb phosphorylation, DIM induced a reduction in
the levels of the E2F-1 protein. These findings indicate
that the expression of Rb-E2F regulatory targets may have
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been reduced in DIM-treated cells, and this phenomenon
may have contributed to DIM-induced G1 arrest in HT-29
cells.

p21CIP1/WAFL expression is usually controlled at the tran-
scriptional level by both p53-dependent and -independ-
ent mechanisms [44]. In the present study, we noted that
DIM induced p21CIP1/WAFL mRNA levels in HT-29 cells
(Fig. 3), which harbor a mutant p53 gene [45]. In addi-
tion, in our previous study, we demonstrated that p53 lev-
els were not affected by DIM treatment in HCT116 human
colon cancer cells, which harbor the wild-type p53 gene
[31]. These results show that DIM increases p21CIP1/WAF1
levels via p53-independent mechanisms.

Entry into mitosis is regulated by the activity of the cyclin
B/CDC2 complex, which is tightly controlled by its phos-
phorylation status. CDC2 is inactive in phosphorylated
form, and the CDC25C phosphatase removes the phos-
phates of Thr14 and Tyr15 in CDC2, resulting in the acti-
vation of the cyclinB/CDC2 complex (Review in [46]). In
the current study, DIM caused a reduction in the levels of
cyclin B1 and CDC25C proteins, an effect which may have
contributed to reduced CDC2 activity, ultimately leading
to G2/M cell cycle delay.

Conclusion

We have demonstrated that DIM inhibits HT-29 cell pro-
liferation and induces G1 and G2/M phase arrest, both of
which are associated with reduced CDK2 and CDC2 activ-
ity, respectively. The current results, together with the
results of our previous work [31], show that DIM inhibits
colon cancer cell growth via the induction of cell cycle
arrest and apoptosis. Future animal and human studies
will be required to determine whether DIM can be applied
as a potential agent for the prevention of colon cancer.
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kinase; Rb: retinoblastoma proteins; CDC: cell division

cycle.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

HJC, DYL, and JHYP designed the project. HJC performed
the overall biochemical analysis and wrote the first draft
of the manuscript. DYL performed the CDK assays. JHYP
directed the overall study and revised the manuscript. All
authors contributed to the discussion of the data, and read
and approved the final manuscript.

Acknowledgements
This study is supported by a Korea Science and Engineering Foundation
(KOSEF) grant funded by the Korean government (Ministry of Education,

http://www.biomedcentral.com/1471-230X/9/39

Science and Technology) (R01-2007-000-20 | 64-0) and the Korea Research
Foundation Grant funded by the Korean Government (MOEHRD) (KRF-
2006-311-C00176).

References

I. Verhoeven DT, Goldbohm RA, van Poppel G, Verhagen H, Brandt PA
van den: Epidemiological studies on brassica vegetables and
cancer risk. Cancer Epidemiol Biomarkers Prev 1996, 5(9):733-748.

2. Cohen JH, Kristal AR, Stanford JL: Fruit and vegetable intakes
and prostate cancer risk. | Natl Cancer Inst 2000, 92(1):61-68.

3. Zhang SM, Hunter DJ, Rosner BA, Giovannucci EL, Colditz GA,
Speizer FE, Willett WC: Intakes of fruits, vegetables, and
related nutrients and the risk of non-Hodgkin's lymphoma
among women. Cancer Epidemiol Biomarkers Prev 2000,
9(5):477-485.

4.  Ambrosone CB, McCann SE, Freudenheim JL, Marshall JR, Zhang Y,
Shields PG: Breast cancer risk in premenopausal women is
inversely associated with consumption of broccoli, a source
of isothiocyanates, but is not modified by GST genotype. |
Nutr 2004, 134(5):1134-1138.

5. Higdon}V, Delage B, Williams DE, Dashwood RH: Cruciferous veg-
etables and human cancer risk: epidemiologic evidence and
mechanistic basis. Pharmacol Res 2007, 55(3):224-236.

6.  Hayes D, Kelleher MO, Eggleston IM: The cancer chemopreven-
tive actions of phytochemicals derived from glucosinolates.
European journal of nutrition 2008, 47(Suppl 2):73-88.

7. Holst B, Williamson G: A critical review of the bioavailability of
glucosinolates and related compounds. Natural product reports
2004, 21(3):425-447.

8. Oganesian A, Hendricks JD, Williams DE: Long term dietary
indole-3-carbinol inhibits diethylnitrosamine-initiated hepa-
tocarcinogenesis in the infant mouse model. Cancer Lett 1997,
118(1):87-94.

9. Srivastava B, Shukla Y: Antitumour promoting activity of
indole-3-carbinol in mouse skin carcinogenesis. Cancer Lett
1998, 134(1):91-95.

10. Kim DJ, Shin DH, Ahn B, Kang JS, Nam KT, Park CB, Kim CK, Hong
JT, Kim YB, Yun YW, et al.: Chemoprevention of colon cancer
by Korean food plant components. Mutat Res 2003, 523-
524:99-107.

I'l. Rahman KW, Sarkar FH: Inhibition of nuclear translocation of
nuclear factor-{kappa}B contributes to 3,3'-diindolylmeth-
ane-induced apoptosis in breast cancer cells. Cancer Res 2005,
65(1):364-371.

12. Zhang J, Hsu BAJ, Kinseth BAM, Bjeldanes LF, Firestone GL: Indole-
3-carbinol induces a Gl cell cycle arrest and inhibits pros-
tate-specific antigen production in human LNCaP prostate
carcinoma cells. Cancer 2003, 98(11):2511-2520.

13.  Frydoonfar HR, McGrath DR, Spigelman AD: Inhibition of prolifer-
ation of a colon cancer cell line by indole-3-carbinol. Colorectal
Dis 2002, 4(3):205-207.

14.  Aggarwal BB, Ichikawa H: Molecular targets and anticancer
potential of indole-3-carbinol and its derivatives. Cell Cycle
2005, 4(9):1201-1215.

I15.  Grose KR, Bjeldanes LF: Oligomerization of indole-3-carbinol in
aqueous acid. Chem Res Toxicol 1992, 5(2):188-193.

16. De Kruif CA, Marsman JW, Venekamp JC, Falke HE, Noordhoek |,
Blaauboer BJ, Wortelboer HM: Structure elucidation of acid
reaction products of indole-3-carbinol: detection in vivo and
enzyme induction in vitro. Chem Biol Interact 1991,
80(3):303-315.

17.  Sepkovic DW, Bradlow HL, Bell M: Quantitative determination
of 3,3'-diindolylmethane in urine of individuals receiving
indole-3-carbinol. Nutr Cancer 2001, 41(1-2):57-63.

18. Stresser DM, Williams DE, Griffin DA, Bailey GS: Mechanisms of
tumor modulation by indole-3-carbinol. Disposition and
excretion in male Fischer 344 rats. Drug Metab Dispos 1995,
23(9):965-975.

19.  Nachshon-Kedmi M, Fares FA, Yannai S: Therapeutic activity of
3,3'-diindolylmethane on prostate cancer in an in vivo
model. Prostate 2004, 61(2):153-160.

20. Wattenberg LW, Loub WD: Inhibition of polycyclic aromatic
hydrocarbon-induced neoplasia by naturally occurring
indoles. Cancer Res 1978, 38(5):1410-1413.

Page 10 of 11

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8877066
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8877066
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10620635
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10620635
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10815692
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10815692
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10815692
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15113959
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15113959
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15113959
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17317210
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17317210
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17317210
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18458837
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18458837
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15162227
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15162227
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9310264
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9310264
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9310264
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10381134
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10381134
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15665315
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15665315
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15665315
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14635088
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14635088
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14635088
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12780618
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12780618
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16082211
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16082211
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1643248
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1643248
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1954658
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1954658
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1954658
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12094629
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12094629
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12094629
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8565787
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8565787
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8565787
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15305338
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15305338
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15305338
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=416908
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=416908
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=416908

BMC Gastroenterology 2009, 9:39

21.

22.
23.

24.

25.
26.
27.

28.

29.
30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Chang X, Tou JC, Hong C, Kim HA, Riby JE, Firestone GL, Bjeldanes
LF: 3,3'-Diindolylmethane inhibits angiogenesis and the
growth of transplantable human breast carcinoma in ath-
ymic mice. Carcinogenesis 2005, 26(4):771-778.

Sarkar FH, Li Y: Indole-3-carbinol and prostate cancer. | Nutr
2004, 134(12 Suppl):3493S-3498S.

Hong C, Firestone GL, Bjeldanes LF: Bcl-2 family-mediated apop-
totic effects of 3,3'-diindolylmethane (DIM) in human breast
cancer cells. Biochem Pharmacol 2002, 63(6):1085-1097.

Hong C, Kim HA, Firestone GL, Bjeldanes LF: 3,3'-Diindolylmeth-
ane (DIM) induces a G(I) cell cycle arrest in human breast
cancer cells that is accompanied by Sp |-mediated activation
of p2I(WAFI/CIPI) expression. Carcinogenesis 2002,
23(8):1297-1305.

Hanahan D, Weinberg RA: The hallmarks of cancer. Cell 2000,
100(1):57-70.

Sherr CJ: The Pezcoller lecture: cancer cell cycles revisited.
Cancer Res 2000, 60(14):3689-3695.

Smits VA, Medema RH: Checking out the G(2)/M transition. Bio-
chim Biophys Acta 2001, 1519(1-2):1-12.

Li W, Sanki A, Karim RZ, Thompson JF, Soon Lee C, Zhuang L, McCa-
rthy SW, Scolyer RA: The role of cell cycle regulatory proteins
in the pathogenesis of melanoma. Pathology 2006,
38(4):287-301.

Sherr CJ, Roberts JM: Inhibitors of mammalian GI cyclin-
dependent kinases. Genes Dev 1995, 9(10):1149-1163.
Gamet-Payrastre L, Lumeau S, Gasc N, Cassar G, Rollin P, Tulliez J:
Selective cytostatic and cytotoxic effects of glucosinolates
hydrolysis products on human colon cancer cells in vitro.
Anti-cancer drugs 1998, 9(2):141-148.

Kim EJ, Park SY, Shin HK, Kwon DY, Surh Y], Park JH: Activation of
caspase-8 contributes to 3,3'-Diindolylmethane-induced
apoptosis in colon cancer cells. | Nutr 2007, 137(1):31-36.

Kim EJ, Holthuizen PE, Park HS, Ha YL, Jung KC, Park JHY: Trans-10,
cis-12 conjugated linoleic acid inhibits Caco-2 colon cancer
cell growth. American journal of physiology 2002, 283:G357-G367.
Lim DY, Tyner AL, Park JB, Lee JY, Choi YH, Park JH: Inhibition of
colon cancer cell proliferation by the dietary compound con-
jugated linoleic acid is mediated by the CDK inhibitor
p21(CIPI/WAFI). | Cell Physiol 2005, 205(1):107-113.

Cho HJ, Kim WK, Kim EJ, Jung KC, Park S, Lee HS, Tyner AL, Park
JH: Conjugated linoleic acid inhibits cell proliferation and
ErbB3 signaling in HT-29 human colon cell line. American jour-
nal of physiology 2003, 284(6):G996-1005.

Kim EJ, Kang I}, Cho HJ, Kim WK, Ha YL, Park JH: Conjugated Lino-
leic Acid Downregulates Insulin-Like Growth Factor-I
Receptor Levels in HT-29 Human Colon Cancer Cells. | Nutr
2003, 133(8):2675-2681.

Lim DY, Jeong Y, Tyner AL, Park JH: Induction of cell cycle arrest
and apoptosis in HT-29 human colon cancer cells by the die-
tary compound luteolin. American journal of physiology 2007,
292(1):G66-75.

Plate AY, Gallaher DD: Effects of indole-3-carbinol and phene-
thyl isothiocyanate on colon carcinogenesis induced by
azoxymethane in rats. Carcinogenesis 2006, 27(2):287-292.

Suzui M, Inamine M, Kaneshiro T, Morioka T, Yoshimi N, Suzuki R,
Kohno H, Tanaka T: Indole-3-carbinol inhibits the growth of
human colon carcinoma cells but enhances the tumor multi-
plicity and volume of azoxymethane-induced rat colon car-
cinogenesis. Int | Oncol 2005, 27(5):1391-1399.

Howells LM, Moiseeva EP, Neal CP, Foreman BE, Andreadi CK, Sun
YY, Hudson EA, Manson MM: Predicting the physiological rele-
vance of in vitro cancer preventive activities of phytochemi-
cals. Acta pharmacologica Sinica 2007, 28(9):1274-1304.

Anderton M), Manson MM, Verschoyle RD, Gescher A, Lamb JH,
Farmer PB, Steward WP, Williams ML: Pharmacokinetics and tis-
sue disposition of indole-3-carbinol and its acid condensation
products after oral administration to mice. Clin Cancer Res
2004, 10(15):5233-5241.

Reed GA, Arneson DW, Putnam WC, Smith HJ, Gray ]JC, Sullivan DK,
Mayo MS, Crowell JA, Hurwitz A: Single-dose and multiple-dose
administration of indole-3-carbinol to women: pharmacoki-
netics based on 3,3'-diindolylmethane. Cancer Epidemiol Biomar-
kers Prev 2006, 15(12):2477-2481.

DeGregori J, Leone G, Ohtani K, Miron A, Nevins JR: E2F-1 accu-
mulation bypasses a Gl arrest resulting from the inhibition

http://www.biomedcentral.com/1471-230X/9/39

of Gl cyclin-dependent kinase activity. Genes Dev 1995,
9(23):2873-2887.

43. Knudsen ES, Knudsen KE: Tailoring to RB: tumour suppressor
status and therapeutic response. Nat Rev Cancer 2008,
8:714-724.

44. Gartel AL, Tyner AL: Transcriptional regulation of the
p21((WAFI/CIPI)) gene. Exp Cell Res 1999, 246(2):280-289.

45. Violette S, Poulain L, Dussaulx E, Pepin D, Faussat AM, Chambaz |,
Lacorte M, Staedel C, Lesuffleur T: Resistance of colon cancer
cells to long-term 5-fluorouracil exposure is correlated to
the relative level of Bcl-2 and Bcl-X(L) in addition to Bax and
p53 status. Int | Cancer 2002, 98(4):498-504.

46. Schwartz GK, Shah MA: Targeting the cell cycle: a new
approach to cancer therapy. J din  Oncol 2005,
23(36):9408-9421.

Pre-publication history
The pre-publication history for this paper can be accessed
here:

http://www.biomedcentral.com/1471-230X/9/39/pre
pub

Publish with Bio Med Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and published immediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here: O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 11 of 11

(page number not for citation purposes)



http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15661811
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15661811
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15661811
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15570059
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11931841
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11931841
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11931841
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12151347
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12151347
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12151347
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10647931
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10919634
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11406266
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16916716
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16916716
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7758941
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7758941
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9510500
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9510500
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17182797
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17182797
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17182797
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12121883
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12121883
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15880444
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15880444
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15880444
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12571082
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12571082
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12888657
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12888657
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12888657
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16901994
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16901994
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16901994
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16113056
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16113056
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16113056
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16211236
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16211236
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16211236
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17723163
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17723163
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17723163
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15297427
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15297427
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15297427
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17164373
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17164373
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17164373
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7498785
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7498785
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7498785
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19143056
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19143056
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9925742
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9925742
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11920608
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11920608
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11920608
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16361640
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16361640
http://www.biomedcentral.com/1471-230X/9/39/prepub
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Methods
	Materials
	Cell culture
	Cell cycle analysis by flow cytometry
	Immunoprecipitation and immunoblot analyses
	Reverse transcription polymerase chain reaction (RT-PCR)
	In vitro kinase assay
	Statistical analysis

	Results
	DIM induces cell cycle arrest at the G1 and G2/M phases and inhibits DNA synthesis in HT-29 cells
	DIM reduces the levels of CDK4, cyclin A, and cyclin D1 proteins
	DIM increases the levels of p21 and p27 proteins and mRNAs
	DIM inhibits the activity of CDK2 and the levels of phospho-Rb and increases those of hypophosphorylated Rb
	DIM inhibits CDC2 activity

	Discussion
	Conclusion
	Abbreviations
	Competing interests
	Authors' contributions
	Acknowledgements
	References
	Pre-publication history

