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Response of fibroblast growth factor
19 and bile acid synthesis after a body
weight-adjusted oral fat tolerance test in
overweight and obese NAFLD patients: a
non-randomized controlled pilot trial
Dana Friedrich1* , Hanns-Ulrich Marschall2 and Frank Lammert1

Abstract

Background: Non-alcoholic fatty liver disease (NAFLD) is common both in obese and overweight patients. Fibroblast
growth factor 19 (FGF19), an intestinal hormone, could play a role in the complex pathogenesis of NAFLD. The aim of
our study was to investigate responses of FGF19 and bile acid (BA) synthesis after a body weight-adjusted oral fat
tolerance test (OFTT) in overweight and obese NAFLD patients.

Methods: For this study, we recruited 26 NAFLD patients; 14 overweight (median BMI 28.3 kg/m2), 12 obese
(35.3 kg/m2) and 16 healthy controls (24.2 kg/m2). All individuals received 1 g fat (Calogen®) per kg body weight
orally. Serum concentrations of FGF19 were determined by ELISA. Concentrations of BAs and BA synthesis marker
7α-hydroxy-4-cholesten-3-one (C4) were measured by gas chromatography-mass spectrometry and high-performance
liquid chromatography, respectively; all at 0 (baseline), 2, 4 and 6 h during the OFTT.

Results: BMI correlated negatively with fasting FGF19 concentrations (rho = − 0.439, p = 0.004). FGF19 levels of obese
NAFLD patients were significantly (p= 0.01) lower in the fasting state (median 116.0 vs. 178.5 pg/ml), whereas overweight
NAFLD patients had significantly (p = 0.004) lower FGF19 concentrations 2 h after the fat load (median 163.0 vs. 244.5 pg/
ml), and lowest values at all postprandial time points as compared to controls. Baseline BA concentrations correlated
positively with FGF19 values (rho = 0.306, p = 0.048). In all groups, we observed BA increases during the OFTT with a peak
at 2 h but no change in C4 levels in overweight/obese NAFLD patients.

Conclusions: Reduced basal gastrointestinal FGF19 secretion and decreased postprandial response to oral fat together
with blunted effect on BA synthesis indicate alterations in intestinal or hepatic FXR signaling in overweight and obese
NAFLD subjects. The precise mechanism of FGF19 signaling after oral fat load needs further evaluation.

Trial registration: We have registered the trial retrospectively on 30 Jan 2018 at the German clinical trials
register (http://www.drks.de/), and the following number has been assigned DRKS00013942.
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Background
Obesity and fatty liver disease represent increasing med-
ical problems in developed countries. In Germany, the
prevalence of obesity increased during the years 1998 to
2011 from 18.9 to 23.3% in men and from 22.5 to 23.9%
in women [1]. In the United States, 37% of adults are
obese [2]. Obesity is an important risk factor of
non-alcoholic fatty liver disease (NAFLD), which has
been reported in 30 to 40% of adults [3, 4].
The term NAFLD is used for a wide spectrum of fatty

liver diseases that starts with simple steatosis in
non-alcoholic fatty liver (NAFL) that may progress to
non-alcoholic steatohepatits (NASH), which is compli-
cated by fibrosis, cirrhosis, and eventually hepatocellular
carcinoma [5–7]. NAFLD is often associated with the
metabolic syndrome and requires exclusion of excessive
alcohol consumption as well as viral and autoimmune
liver diseases [8]. NAFLD is common in obesity but also
in overweight patients [9, 10]. The pathophysiology of
NAFLD is complex and still not fully defined [11, 12].
Several metabolic factors have already been identified in
the development of NAFLD, including insulin resistance,
diabetes mellitus and obesity.
So far there have been only few studies of the im-

portance of gastrointestinal hormones in the patho-
genesis of NAFLD [13–15]. The gastrointestinal
hormone fibroblast growth factor 19 (FGF19) has
emerged as a novel regulator of bile acid, carbohy-
drate and lipid metabolism. In human metabolic syn-
drome associated diseases, such as type 2 diabetes
mellitus (T2DM) and NAFLD, FGF19 signaling seems
to be dysregulated [16]. In animals, FGF19 transgenic
mice show resistance to a high-fat diet and decreased
liver triglyceride concentrations [17] while the admin-
istration of recombinant FGF19 increases the meta-
bolic rate [18]. Accordingly, in humans with NAFLD,
reduced fasting FGF19 levels were found [14, 19, 20].
Therefore, the present study focuses on the dietary
regulation of FGF19 and its potential role in the
pathogenesis of NAFLD.
FGF19 release in the intestine is induced by bile acids

(BAs). After a meal, the entry of dietary fat in the duode-
num causes gallbladder contraction and BA inflow into
the intestinal lumen. The reabsorption of BAs in the ter-
minal ileum activates the canonical BA sensor farnesoid
X receptor (FXR), resulting in enhanced transcription
and secretion of FGF19 [21, 22]. FGF19 binds on hepa-
tocytes to the FGF receptor 4 (FGFR4) and its cofactor
βKlotho [22–24], which triggers a signaling cascade that
represses cholesterol 7α-hydroxylase (CYP7A1), the
rate-limiting enzyme in BA synthesis from cholesterol
[25]. 7α-Hydroxy-4-cholesten-3-one (C4) is an inter-
mediate of BA synthesis, which can be measured in
serum [26].

Since the role of FGF19 in the pathogenesis of hu-
man NAFLD is unknown, we studied FGF19 and hep-
atic downstream effects (C4 and BAs) in overweight
and obese NAFLD outpatients (and healthy controls)
that were subjected to a body weight-adjusted oral fat
tolerance test (OFTT). We determined serum concen-
trations of FGF19, C4 and BAs at baseline and at 2, 4
and 6 h after OFTT. We hypothized that FGF19
levels are lower in obese compared to overweight
NAFLD patients.
We aimed to answer the following questions in this

study:

1. Do fasting FGF19 serum concentrations differ
between normal-weight healthy, overweight and
obese NAFLD patients?

2. How does a body weight-adjusted oral fat tolerance
test (OFTT) affect serum FGF19 concentrations in
these populations?

3. How does a postprandial FGF19 response affect
hepatic BA biosynthesis, as assessed by C4?

Methods
Study protocol
The study protocol was approved by the Ethics Committee
of the Ärztekammer des Saarlandes, Saarbrücken (ID num-
ber 58/09). All subjects (≥ 18 years) were fully informed
about the study objectives and methods and gave their
written informed consent before participating in this
non-randomized controlled pilot trial.

Study subjects
During 2009 and 2010, we recruited overweight and
obese NAFLD outpatients in the Department of Internal
Medicine II, Saarland University Medical Center, Hom-
burg, as well as healthy controls with normal body
weight. Inclusion criteria for NAFLD were ultrasound
and/or biopsy findings consistent with fatty liver disease.
Exclusion criteria were increased alcohol consumption
in medical history and the following acute and chronic
liver diseases: cirrhosis, hepatitis A virus (HAV), hepa-
titis B virus (HBV), hepatitis C virus (HCV), hepatitis D
virus (HDV), cytomegalovirus (CMV) and Epstein-Barr
Virus (EBV) infections, hemochromatosis, Wilson’s dis-
ease, α1-antitrypsin deficiency, and autoimmune hepa-
titis. Healthy controls included employees of the clinic
and medical students with normal BMI and no diseases
in history. In controls, no liver and laboratory diagnosis
was performed.
Subjects were divided into three groups according to

their BMI (healthy controls, normal weight: 19.0–
25.4 kg/m2, overweight NAFLD: 25.5–29.9 kg/m2, obese
NAFLD: ≥ 30.0 kg/m2) [27, 28].
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Liver parameters
In overweight and obese patients (N = 26), liver status
was assessed by abdominal ultrasound and/or liver
biopsy. Ultrasound was performed using the Hitachi
EUB-8500 ultrasound scanner (Hitachi Medical Systems,
Wiesbaden, Germany). Hepatic steatosis results in
abnormal echo patterns on ultrasound scanning; the
severity of steatosis was graded as mild (I), moderate
(II), or severe (III) [29]. Liver biopsy samples of five
patients were examined by an experienced pathologist of
Saarland University Medical Center.

Oral fat tolerance test (OFTT)
We used a body weight-adjusted OFTT to investigate
postprandial FGF19, BA and C4 responses in our study
subjects. For the present study, a standardized test drink
Calogen® (Nutricia, Erlangen, Germany) was adminis-
tered, which is a lipid emulsion based on vegetable fat
with 50% long-chain triglycerides [30]. All individuals
received 1 g fat per kg body weight orally. The fat load
was based on subjects’ body weight to adjust the OFTT
to hypercaloric (especially high-fat) eating behavior of
obese patients [31].

Blood samples
Blood samples were drawn from a peripheral vein at
8:00 AM after an overnight fasting and 2, 4 and 6 h after
the oral fat challenge. Samples were centrifuged for
10 min at 3000 g 30 min after blood collection
(ROTANTA 46R, Hettich, Tuttlingen, Germany). Subse-
quently, serum was stored in aliquots at-70 °Cuntil
analysis.

Serum FGF19, bile acid and C4 measurements
FGF19 serum concentrations were measured in duplicate
by quantitative sandwich enzyme-linked immunosorbent
assay, using the FGF19 Quantikine ELISA kit (R&D Sys-
tems, Minneapolis, USA). Serum BA concentrations were

determined by gas chromatography-mass spectrometry
(GCMS) [32]. 7α-hydroxy-4-cholesten-3-one (C4), a valid
marker of bile acid biosynthesis [33], was measured by
high-performance liquid chromatography (HPLC).

Statistical analysis
Data analysis was performed using SPSS (version 20.0,
IBM, Ehningen, Germany). Kruskal-Wallis test was used
to analyze quantitative data for differences within the co-
hort. For the present study with a low number of study
subjects (N < 20), normal distributions were not expected
[34]. Thus, data are expressed as medians and interquar-
tile ranges (IQR 25–75). In addition, Mann-Whitney-U
test was used to test differences between two groups. The
strength of associations between two parameters was esti-
mated using the non-parametric Spearman correlation
test. Spearman’s correlation coefficient is presented as rho.
For the OFTT, FGF19(0-6h)-area under the curve (AUC)
and, after correcting for baseline, the incremental AUC
(FGF19-IAUC) were computed using GraphPad Prism
(version 6.0, GraphPad Software, La Jolla, CA, USA). A
p-value < 0.05 denotes statistical significance.

Results
Subject characteristics
Table 1 summarizes the subject characteristics. A total
of 42 subjects, 21 women and 21 men, were recruited
for our study. Study participants were between 19 and
68 years old (median 47.0 years, IQR 28.8–53.8). Overall,
we recruited 14 overweight and 12 obese NAFLD
patients as well as 16 healthy controls. Sex and age did
not differ between groups. Obese patients had a median
BMI of 35.3 kg/m2, which corresponds to obesity grade
II [28].
NAFLD was diagnosed by ultrasound and/or biopsy.

In overweight and obese patients, the steatosis spectrum
ranged from grade I, II and III to NASH and fibrosis. In
the overweight group (N = 14), grade I liver steatosis was

Table 1 Subject characteristics, basal and postprandial FGF19 serum concentrations

Variables Control Overweight Obesity p-value

N (men/women) 16 (7/9) 14 (8/6) 12 (6/6) n.s.a

Age (years) 29.5 (24.0–53.0) 49.0 (38.8–57.3) 48.0 (37.0–57.3) 0.551b

BMI (kg/m2) 24.2 (21.8–26.6) 28.3 (26.3–29.2) 35.3 (32.7–39.0) < 0.001b

FGF19 (pg/ml)

t = 0 h 178.5 (101.0–257.0)c 127.5 (70.0–161.3) 116.0 (51.0–134.3)c 0.01c

t = 2 h 244.5 (161.5–377.5)c 163.0 (78.5–168.3)c 181.0 (85.3–393.0) 0.004c

t = 4 h 332.5 (202.0–590.8) 207.0 (112.5–365.0) 220.0 (138.8–385.3) 0.445b

t = 6 h 211.0 (165.3–296.3) 154.0 (124.0–254.0) 184.5 (110.5–274.3) 0.445b

All data are given as median (interquartile range)
aChi-square-test
bKruskal-Wallis-test
cMann-Whitney-U-test
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found in six patients (43%), grade II in five patients
(36%), and grade III in one patient (7%). NASH was
diagnosed in one and fibrosis stage II was documented
in one patient. In the obese group (N = 12), two patients
(17%) displayed liver steatosis grade I, four patients
(33%) showed grade II, and three participants (25%) had
grade III. In this group, NASH was found in one and
fibrosis stage I also in one patient. In one obese study
participant, liver status could not be assessed by
ultrasound. Additional file 1: Table S1 lists the co-
morbidities in overweight and obese NAFLD patients.
In overweight patients, hypercholesterolemia and in
obese patients, arterial hypertension were the domin-
ant concomitant diseases, respectively. Controls did
not take any drugs regularly. Three overweight and
eight obese patients were taking medications. These
included antidiabetics, antihypertensives, thyroid hor-
mones, analgesics, proton pump inhibitors, antidepres-
sants, non-steroidal antirheumatics, corticoidsteroids and
allopurinol, respectively.

Basal and postprandial FGF19 serum concentrations
In the total study group (N = 42), fasting FGF19 concen-
trations ranged from 17.0 to 392.0 pg/ml (median 133.5,
IQR 82.8–190.3). Basal FGF19 values were significantly

lower in obese NAFLD patients as compared to controls
and tended to be lower in overweight NAFLD subjects,
too (Table 1, Fig. 1). Basal FGF19 concentrations did not
differ between sexes [women, median 126.0 (IQR 80.5–
179.0) vs. men, median 138.0 (IQR 93.0–204.0) pg/ml].
Interestingly, fasting FGF19 concentrations were nega-
tively correlated with BMI (Fig. 2).
After the OFTT, FGF19 concentrations increased in

controls, overweight and obese patients (Table 1, Fig. 1).
Of note, overweight patients displayed lowest FGF19
concentrations at all postprandial time points. Two
hours after the OFTT, FGF19 levels ranged from 10.0 to
697.0 pg/ml (median 178.0, IQR 116.5–255.5). At this
time, overweight NAFLD patients showed significantly
lower FGF19 levels compared with controls (Fig. 1). The
FGF19 maximum was found in all three groups after
4 h, with hormone levels ranging from 59.0 to 935.0 pg/
ml (median 255.0, IQR 163.3–439.3). At 4 h, FGF19
was highest in controls and twice as high as at base-
line. After 6 h, FGF19 values ranged from 48.0 to
802.0 pg/ml (median 189.0, IQR 136.0–269.0) and
were still highest in controls.
Both women and men showed the FGF19 maximum

at 4 h [women, median 270.0 (IQR 167.5–539.0) vs.
men, median 231.0 (IQR 117.5–410.5) pg/ml] but

Fig. 1 Fasting and postprandial FGF19 serum concentrations measured by quantitative sandwich enzyme-linked immunosorbent assay (ELISA).
Comparison of FGF19 values between healthy controls (N = 16), overweight (N = 14) and obese (N = 12) patients with non-alcoholic fatty liver
disease (NAFLD) at baseline (0 h), 2, 4 and 6 h after the oral fat tolerance test (OFTT). Significant difference between basal (0 h) FGF19 concentrations in
controls and obese NAFLD patients [controls 178.5 (101.0–257.0) vs. obese 116.0 (51.0–134.3) pg/ml, medians (IQRs), p=< 0.05, Mann-Whitney-U-test). At
2 h, lower FGF19 values in overweight NAFLD patients in comparison to controls [overweight 163.0 (78.5–168.3) vs. controls 244.5 (161.5–377.5) pg/ml,
medians (IQRs), p= 0.004, Mann-Whitney-U-test), * outlier

Friedrich et al. BMC Gastroenterology  (2018) 18:76 Page 4 of 10



postprandial levels were higher in women at all time
points. Six hours after the oral fat challenge, FGF19 con-
centrations of both sexes tended to reach a significant
difference [women, median 216.0 (IQR 145.0–390.5) vs.
men, median 172.0 (IQR124.0–216.5) pg/ml, p = 0.051].
Mean FGF19(0-6h)-area and mean incremental area

under the curve (AUC and IAUC) did not differ sig-
nificantly between the groups (AUC controls: 1772.8
± 766.6 vs. overweight: 1130.6 ± 590.0 vs. obese:
1469.3 ± 910.0 pg/ml/6 h; IAUC controls: 699.0 ± 383.7 vs.
overweight: 573.3 ± 333.4 vs. obese: 921.5 ± 732.4 pg/ml).
FGF19-AUC was highest in controls and lowest in
overweight patients (p = 0.053); IAUC was higher in
obese and lower in overweight patients in comparison

to controls. FGF19-AUC and IAUC did not correlate
with body weight-adjusted fat load. In addition, there
was no association between FGF19-AUC and BMI;
FGF19-IAUC tended to correlate with age (rho = 0.291,
p = 0.062).

Basal and postprandial BA serum concentrations
Fasting and postprandial bile acid (BA) concentrations
did not differ between overweight/obese NAFLD pa-
tients and controls. In all three groups, we observed a
BA increase after the OFTT with a peak at 2 h (Table 2).
Basal FGF19 concentrations correlated positively with
basal BA values (Fig. 3).

N=42 
p=0.004 
rho= - 0.439 

Fig. 2 Fasting FGF19 serum concentrations versus body mass index (BMI) for all study subjects. FGF19 values correlated negatively with BMI. A
scattered plot is shown and the Spearman’s correlation coefficient was calculated

Table 2 Basal and postprandial BA and C4 serum concentrations

Variables Control Overweight Obesity p-value

N (men/women) 16 (7/9) 14 (8/6) 12 (6/6) n.s.a

Bile acids (μM)

t = 0 h 1.1 (0.8–1.7) 1.5 (0.8–2.2) 1.4 (0.9–1.7) 0.343

t = 2 h 1.4 (1.1–4.7) 2.1 (1.2–3.8) 2.4 (1.6–4.1) 0.311

t = 4 h 1.1 (0.7–2.0) 2.0 (1.3–2.5) 2.0 (1.0–2.3) 0.155

t = 6 h 0.7 (0.5–1.6) 1.3 (0.8–2.0) 1.2 (0.8–1.7) 0.087

C4 (nM)

t = 0 h 41.4 (7.0–69.2) 58.5 (12.8–91.6) 35.1 (1.2–72.3) 0.422

t = 2 h 28.1 (7.1–49.6) 43.1 (10.0–114.0) 35.7 (1.2–118.3) 0.765

t = 4 h 13.0 (6.8–44.7) 40.8 (21.1–99.3) 32.7 (3.3–108.0) 0.343

t = 6 h 11.8 (4.1–34.4) 40.7 (18.1–80.1) 28.6 (3.5–82.4) 0.445

All data are given as median (interquartile range), p-values: Kruskal-Wallis-test,aChi-square-test
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Basal and postprandial C4 serum concentrations
Fasting and postprandial C4 values did not differ signifi-
cantly between study participants (Table 2, Fig. 4). At all
postprandial time points, C4 concentrations were mark-
edly lower in controls in comparison to overweight/

obese NAFLD patients. C4 concentrations in overweight
NAFLD patients remained unchanged for 4 h postpran-
dially, despite increasing FGF19 values. In the total study
group FGF19 concentrations at 2 h correlated negatively
with C4 values at 4 h after the OFTT (Fig. 5). There was

N=42 
p=0.048 
rho= 0.306 

Fig. 3 Fasting FGF19 serum concentrations versus fasting bile acid (BA) serum concentrations for all subjects (N = 42). There was a correlation
between FGF19 and BA values. A scattered plot is shown and the Spearman’s correlation coefficient was calculated

Fig. 4 Fasting and postprandial C4 concentrations. C4, a valid marker of bile acid biosynthesis, was measured by high-performance liquid chromatography
(HPLC). Comparison of C4 values between healthy controls (N= 16), overweight (N= 14) and obese (N= 12) patients with non-alcoholic fatty liver disease
(NAFLD) at baseline (0 h), 2, 4 and 6 h after the oral fat tolerance test (OFTT). C4 concentrations did not differ between groups (Kruskal-Wallis-test),*outlier
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also an inverse correlation of FGF19 concentrations at
4 h and C4 values at 6 h after the OFTT in the study
group (Fig. 6). These correlations were confirmed for
the control group (Additional file 2: Figure S1,
Additional file 3: Figure S2). In NAFLD patients, FGF19
concentrations did not correlate with C4 values.

Discussion
The present study investigated serum FGF19, BA, and
C4 profiles in overweight and obese NAFLD patients, in
comparison to normal-weight healthy controls, after a
body weight-adjusted oral fat load. The key findings of
our study are (i) fasting FGF19 concentrations were

N=42 
p=0.031 
rho= - 0.332 

Fig. 5 FGF19 serum concentrations at 2 h versus C4 values at 4 h after the oral fat tolerance test (OFTT) for all subjects (N = 42). A scattered plot
is shown and the Spearman’s correlation coefficient was calculated

N=42 
p=0.006 
rho= - 0.420 

Fig. 6 FGF19 serum concentrations at 4 h versus C4 values at 6 h after the oral fat tolerance test (OFTT) for all subjects (N = 42). A scattered plot
is shown and the Spearman’s correlation coefficient was calculated
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significantly lower in obese (grade II) NAFLD patients as
compared to controls, (ii) overweight NAFLD patients
had significantly lower FGF19 concentrations 2 h after
the fat load and lowest values at all postprandial time
points and (iii) BAs increased during the OFTT but
without changes in C4 levels.
Low FGF19 concentrations have been reported in

metabolic syndrome [35], obesity [36] and type 2 dia-
betes [37, 38]. The findings by Jansen et al. [19] support
our results, i.e. the presence of fatty liver disease in
obesity is associated with lower fasting FGF19 concen-
trations. Also in obese children with NAFLD [20] and
young obese NASH patients [39] lower fasting FGF19
values were detected whereas Schreuder et al. did not
observe differences in fasting FGF19 concentrations be-
tween controls and obese NAFLD subjects [13]. In our
study, BMI correlated negatively with fasting FGF19
serum concentrations. Our study was too small to cor-
relate FGF19 levels with biopsy-proven severity of
NAFLD. In this respect, inverse associations had been
found in children [15, 40], but some studies did not find
correlations between steatosis grade and FGF19 concen-
trations [13, 14].
To the best of our knowledge, we are the first group

which established a body-weight adjusted oral fat toler-
ance test (OFTT) to stimulate BA secretion and subse-
quent FGF19 expression in overweight and obese
NAFLD patients. Only a few studies report about post-
prandial FGF19 concentrations [13, 41, 42]. Similar oral
fat load tests have been used for determining postpran-
dial triglyceride concentrations, but to date no standard
method is established [43]. Our controls showed the
highest FGF19 values during OFTT, suggesting unim-
paired intestinal FGF19 release. Remarkably, overweight
NAFLD patients had significantly lower FGF19 concen-
trations 2 h after the fat load as compared to controls
and lowest hormone values at all postprandial time
points. In another study in healthy volunteers, oral fat
load (75 g vegetable fat, mixture of Calogen®, sun flower
and olive oil) also showed a stepwise increase of FGF19
between 2 and 4 h and a decrease at 6 h almost reaching
fasting levels [41]. Schreuder et al. used whipped cream
for their oral fat test in NAFLD patients [13]. The fat
challenge was applied with 30 g cream (35% w/v fat) per
m2 of body surface area. Single postprandial time points
in plasma FGF19 concentrations did not differ between
controls and NAFLD patients. Interestingly, the post-
prandial FGF19-IAUC was lower in NAFLD patients
[13]. In our study, mean AUC and IAUC did not differ
significantly, but AUC was highest in controls and low-
est in overweight patients; in contrast, IAUC was highest
in obese and lower in overweight patients in comparison
to controls. In comparison to Schreuder’s study [13], our
fat challenge was considerably higher, which could have

contributed to differential findings at single postprandial
time points and in FGF19-IAUC between controls and
NAFLD patients.
Before our study started, we suspected that obese

patients would have the highest energy and fat intake.
Therefore we decided for a body weight-based fat load
to adjust the OFTT to the patient’s eating behavior. To
check our assumption, we used a 3-day nutritional
protocol and calculated energy and macronutrients in-
take (data not shown). Since there was no significant dif-
ference between groups, we suppose under-reporting of
food intake in our overweight and obese patients. Most
researchers agree that the reported accuracy of food in-
take decreases with increasing BMI. A systematic review
covering studies between 1982 and 2014 showed that a
BMI > 30 kg/m2 is associated with significant
under-reporting of food intake. These studies were
mostly from Europe and North America [44]. For ex-
ample, in morbid obese (BMI > 40 kg/m2) energy intake
can reach more than 4000 kcal/day, with high fat intakes
of about 40 to 57% of total energy intake [31].
In the present study, higher fat challenge in obese

patients could explain their higher FGF19 values in
comparison to overweight patients, which indicates
that obese can compensate their low fasting FGF19
values by a high fat intake. Sonne and colleagues [42]
found that FGF19 concentrations in patients with
type 2 diabetes and healthy controls increased with
increasing fat and decreasing carbohydrate content in
liquid meals (500 kcal, 2.5 vs. 10.0 and 40.0 g fat).
FGF19 values tended to be lower in type 2 diabetes
patients compared with controls, but were not statis-
tically significant.
Oral fat intake stimulates bile acid (BA) secretion. The

entry of dietary fat in the duodenum causes gallbladder
contraction and inflow of BA into the intestinal lumen.
In the ileum, BA induce secretion of FGF19 that sup-
presses de novo BA synthesis in the liver [25]. In the
present study fasting and postprandial BA concentra-
tions did not differ between overweight/obese NAFLD
patients and controls and C4 serum concentrations in
NAFLD patients did not decrease as they did in controls.
Therefore, the hepatic BA biosynthesis was presumably
not repressed. One reason could be that CYP7A1 ex-
pression was insufficiently suppressed by FGF19 due to
low fasting and postprandial FGF19 concentrations.
Schreuder et al. [13] also reported an impaired hepatic
response (no decline of C4) in NAFLD patients with
insulin resistance. The pathomechanism(s) behind the
observed blunted C4 response are unknown. One might
speculate about impaired hepatic signaling after binding
of FGF19 to the FGF receptor 4/βKlotho heterodimer or
other factors within the fatty liver cell that might affect
the feedback regulation of BA synthesis.
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Our method of bile acid analysis did not yield
complete profiles including conjugates with glycine or
taurine. Thus, distinct differences in BA profiles between
lean controls and NAFLD patients might have affected
activation of FXR. This is supported by studies in Chin-
ese children were levels of chenodeoxycholic acid
(CDCA) were increased in the moderate/severe stage of
NAFLD. The authors report, that decreased circulating
level of deoxycholic acid (DCA) in children with mild
NAFLD might have a negative effect on the activation of
FXR, which subsequently triggers an increasing produc-
tion of CDCA in patients with moderate to severe
NAFLD [45]. In contrast, Jiao and colleagues [39] found
increased DCA and decreased CDCA levels in NAFLD
patients. In this context, changes in BA composition
could also be one reason for altered intestinal FXR sig-
naling, expressed as reduced FGF19 levels, in our over-
weight and obese NAFLD patients.

Conclusions
Fasting FGF19 serum concentrations were lowest in
obese NAFLD patients and highest in normal-weight
healthy controls. Our body weight-adjusted oral fat chal-
lenge resulted in lowest FGF19 concentrations in over-
weight NAFLD patients at all postprandial time points.
Overweight and obese NAFLD patients showed impaired
FGF19 release in fasting and postprandial state. We
assume that obese NAFLD patients were able to com-
pensate their low fasting FGF19 values by a high (body
weight-adjusted) oral fat intake. Reduced FGF19 values
in overweight and obese NAFLD patients might reflect
altered intestinal FXR signaling. How the hepatic recep-
tor FGFR4 or its cofactor βKlotho modulate the hepatic
response to FGF19 in NAFLD subjects should be exam-
ined further in functional studies.
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